

What is GeoTrellis?

GeoTrellis is a Scala library and framework that uses Apache Spark [http://spark.apache.org/] to work with raster data. It is released under
the Apache 2 License.

GeoTrellis reads, writes, and operates on raster data as fast as possible.
It implements many Map Algebra [http://en.wikipedia.org/wiki/Map_algebra] operations as well as vector
to raster or raster to vector operations.

GeoTrellis also provides tools to render rasters into PNGs or to store
metadata about raster files as JSON. It aims to provide raster processing at
web speeds (sub-second or less) with RESTful endpoints as well as provide
fast batch processing of large raster data sets.

Please visit the project site [http://geotrellis.io] for more
information as well as some interactive demos.

Why GeoTrellis?

Raster processing has traditionally been a slow task, which has prompted
advances in vector data processing as an alternative. Raster data isn’t
going anywhere, however, with more and more satellite data made public
every year. GeoTrellis is an answer to the growing need for raster
processing at scale. We personally have handled terabyte-level data
sets, but really we are only bound by the theoretical limits of Apache
Spark. By scale then, we mean arbitrarily large.

Contact and Support

You can find more information and talk to developers (let us know what
you’re working on!) at:

	Gitter [https://gitter.im/geotrellis/geotrellis]

	GeoTrellis mailing list [https://groups.google.com/group/geotrellis-user]

Hello Raster!

Here’s a small example showing a routine focal operation over a single
Tile:

scala> import geotrellis.raster._
import geotrellis.raster._

scala> import geotrellis.raster.mapalgebra.focal._
import geotrellis.raster.mapalgebra.focal._

scala> val nd = NODATA
nd: Int = -2147483648

scala> val input = Array[Int](
 nd, 7, 1, 1, 3, 5, 9, 8, 2,
 9, 1, 1, 2, 2, 2, 4, 3, 5,
 3, 8, 1, 3, 3, 3, 1, 2, 2,
 2, 4, 7, 1, nd, 1, 8, 4, 3)
input: Array[Int] = Array(-2147483648, 7, 1, 1, 3, 5, 9, 8, 2, 9, 1, 1, 2,
2, 2, 4, 3, 5, 3, 8, 1, 3, 3, 3, 1, 2, 2, 2, 4, 7, 1, -2147483648, 1, 8, 4, 3)

scala> val iat = IntArrayTile(input, 9, 4) // 9 and 4 here specify columns and rows
iat: geotrellis.raster.IntArrayTile = IntArrayTile([I@278434d0,9,4)

// The asciiDraw method is mostly useful when you're working with small tiles
// which can be taken in at a glance
scala> iat.asciiDraw()
res0: String =
" ND 7 1 1 3 5 9 8 2
 9 1 1 2 2 2 4 3 5
 3 8 1 3 3 3 1 2 2
 2 4 7 1 ND 1 8 4 3
"

scala> val focalNeighborhood = Square(1) // a 3x3 square neighborhood
focalNeighborhood: geotrellis.raster.op.focal.Square =
 O O O
 O O O
 O O O

scala> val meanTile = iat.focalMean(focalNeighborhood)
meanTile: geotrellis.raster.Tile = DoubleArrayTile([D@7e31c125,9,4)

scala> meanTile.getDouble(0, 0) // Should equal (1 + 7 + 9) / 3
res1: Double = 5.666666666666667

Ready? Setup a GeoTrellis development environment.

Changelog

1.1.0

Features

	Spark Enabled Cost Distance [https://github.com/locationtech/geotrellis/pull/1999]

	Conforming Delaunay Triangulation [https://github.com/locationtech/geotrellis/pull/1848]

	Added a fractional-pixel rasterizer for polygons [https://github.com/locationtech/geotrellis/pull/1873] and multipolygons [https://github.com/locationtech/geotrellis/pull/1894]

	Added collections API mapalgebra local and masking functions [https://github.com/locationtech/geotrellis/pull/1947]

	Added withDefaultNoData method for CellTypes [https://github.com/locationtech/geotrellis/pull/1966]

	Moved Spark TestEnvironment to spark-testkit subproject for usage outside of GeoTrellis [https://github.com/locationtech/geotrellis/issues/2012]

	Add convenience overloads to GeoTiff companion object [https://github.com/locationtech/geotrellis/pull/1840]

	Added matplotlib’s Magma, Inferno, Plasma, and Viridis color ramps [https://github.com/locationtech/geotrellis/pull/2053]

	Added library of land use classification color maps. [https://github.com/locationtech/geotrellis/pull/2073]

	Add MGRS encode/decode support to proj4 [https://github.com/locationtech/geotrellis/pull/1838]

	Rasters write support to HDFS / S3 [https://github.com/locationtech/geotrellis/pull/2102]

	Added Range-based reading of HTTP resources [https://github.com/locationtech/geotrellis/pull/2067]

	Improved the WKT parser that powers the WKT.getEpsgCode method [https://github.com/locationtech/geotrellis/pull/1931]

	Updated the geotrellis-geowave subproject to GeoWave 0.9.3 [https://github.com/locationtech/geotrellis/pull/1933]

	Updated the geotrellis-geomesa subproject to GeoMesa 1.2.7 [https://github.com/locationtech/geotrellis/pull/1930]

	Use H3 rather than Next Fit when building S3 partitions from paths [https://github.com/locationtech/geotrellis/pull/1956]

	Added delimiter option to S3InputFormat and S3GeoTiffRDD. [https://github.com/locationtech/geotrellis/pull/2062]

	Signed S3 Streaming for GeoTiff reader (HTTP with GET instead of HEAD request) [https://github.com/locationtech/geotrellis/pull/2091]

	Relaxed constraints to improve layer deletion capabilities [https://github.com/locationtech/geotrellis/pull/2039]

	Allow HadoopGeoTiffRDD and S3GeoTiffRDD to maintain additional key information such as file name [https://github.com/locationtech/geotrellis/pull/2050]

	Added API sugar for simplying construction of AvroRecordCodec [https://github.com/locationtech/geotrellis/pull/2030]

	Make compression optional for Avro encoding and decoding [https://github.com/locationtech/geotrellis/pull/1952/files]

	Optimization to avoid unspecialized Function3 usage in Hillshade, Slope and Aspect [https://github.com/locationtech/geotrellis/pull/2049/files]

	Updated multiple dependencies [https://github.com/locationtech/geotrellis/pull/1945]

	Upgraded ScalaPB version for VectorTile [https://github.com/locationtech/geotrellis/pull/2038]

	Added Avro codecs for ProjectedExtent and TemporalProjectedExtent [https://github.com/locationtech/geotrellis/pull/1971] and ConstantTile types [https://github.com/locationtech/geotrellis/pull/2015]

	Repartition in ETL when re-tiling increases layer resolution [https://github.com/locationtech/geotrellis/pull/2135]

	In GeoTiff reader, compute CellSize from TIFF tags [https://github.com/locationtech/geotrellis/pull/1996]

	Improved apply methods for constructing S3RangeReader [https://github.com/locationtech/geotrellis/pull/1994]

	Reorganized handling of CellType.name [https://github.com/locationtech/geotrellis/pull/2142]

	Documentation improvements, including porting the docts to reStructuredText [https://github.com/locationtech/geotrellis/pull/2016]

	Added top-level “Sinusoidal” CRS, commonly used with MODIS [https://github.com/locationtech/geotrellis/pull/2145]

	Added conditional to key bounds decomposition to detect full bounds query in Acccumulo. [https://github.com/locationtech/geotrellis/pull/2164]

	Support for the ability to specify output CRS via proj4 string. [https://github.com/locationtech/geotrellis/pull/2169]

Fixes

	Fixed issues that made GeoTiff streaming off of S3 slow and broken [https://github.com/locationtech/geotrellis/pull/1905]

	Give a better error message for CRS write failures [https://github.com/locationtech/geotrellis/pull/1874]

	Fix clipping logic during polygon layer query [https://github.com/locationtech/geotrellis/pull/2213]

	Fixed type for CRS authority in NAD83 [https://github.com/locationtech/geotrellis/pull/1916]

	Moved JsonFormats for CellSize and CellType to their proper place [https://github.com/locationtech/geotrellis/pull/1919]

	Fixed polygon rasterization for complex polygon test cases [https://github.com/locationtech/geotrellis/pull/1963]

	Fixed issue with FileLayerDeleter [https://github.com/locationtech/geotrellis/pull/2015]

	Fixed issue with logger serialization [https://github.com/locationtech/geotrellis/pull/2017]

	Fixed bug in renderPng that caused incorrect rendering of non-floating-point rasters [https://github.com/locationtech/geotrellis/issues/2022]

	Don’t allow illegal TileLayouts [https://github.com/locationtech/geotrellis/issues/2026]

	Prevent error from happening during Pyramiding [https://github.com/locationtech/geotrellis/pull/2029]

	Ensure tile columns are not zero when rounding [https://github.com/locationtech/geotrellis/pull/2031]

	Fixed malformed XML error that was happening after failed S3 ingest [https://github.com/locationtech/geotrellis/pull/2040]

	Fix issue with S3LayerDeleter deleting files outside of layer [https://github.com/locationtech/geotrellis/pull/2070]

	Fix TemporalProjectedExtentCodec to handling proj4 strings when CRS isn’t available [https://github.com/locationtech/geotrellis/pull/2034]

	Fixed layoutForZoom to allow 0 zoom level [https://github.com/locationtech/geotrellis/pull/2057]

	Fixed MapKeyTransform to deal with points north and west of extent [https://github.com/locationtech/geotrellis/pull/2060]

	Fixed GeoTiff reading for GeoTiffs with model tie point and PixelIsPoint [https://github.com/locationtech/geotrellis/pull/2061]

	Fixed issue with reading tiny (4 pixel or less) GeoTiffs [https://github.com/locationtech/geotrellis/pull/2063]

	Fix usage of IntCachedColorMap in Indexed PNG encoding [https://github.com/locationtech/geotrellis/pull/2075]

	Ensure keyspace exists in CassandraRDDWriter [https://github.com/locationtech/geotrellis/pull/2083]

	Resolved repartitioning issue with HadoopGeoTiffRDD [https://github.com/locationtech/geotrellis/pull/2105]

	Fixed schema for intConstantTileCodec [https://github.com/locationtech/geotrellis/pull/2110]

	In HadoopAttributeStore, get absolute path for attributePath [https://github.com/locationtech/geotrellis/pull/2123]

	In AccumuloLayerDeleter, close batch deleter [https://github.com/locationtech/geotrellis/pull/2117]

	S3InputFormat - bucket names support period and dashes [https://github.com/locationtech/geotrellis/pull/2133]

	Fix TMS scheme min zoom level [https://github.com/locationtech/geotrellis/pull/2137]

	S3AttributeStore now handles ending slashes in prefix. [https://github.com/locationtech/geotrellis/pull/2147]

	Cell type NoData logic for unsigned byte / short not working properly [https://github.com/locationtech/geotrellis/pull/2171]

	CellSize values should not be truncated to integer when parsing from Json. [https://github.com/locationtech/geotrellis/pull/2174]

	Fixes to GeoTiff writing with original LZW compression. [https://github.com/locationtech/geotrellis/pull/2180]

	In ArrayTile.convert, debug instead of warn against floating point data loss. [https://github.com/locationtech/geotrellis/pull/2190]

	Fixes incorrect metadata update in a per-tile reprojection case [https://github.com/locationtech/geotrellis/pull/2201]

	Fix issue with duplicate tiles being read for File and Cassandra backends [https://github.com/locationtech/geotrellis/pull/2200]

	Move to a different Json Schema validator [https://github.com/locationtech/geotrellis/pull/2222]

	S3InputFormat does not filter according to extensions when partitionCount is used [https://github.com/locationtech/geotrellis/issues/2231]

	In S3GeoTiffReader, partitionBytes has no effect if maxTileSize is set [https://github.com/locationtech/geotrellis/issues/2232]

	Fixes typos with rasterizer extension methods [https://github.com/locationtech/geotrellis/pull/2245]

	Fix writing multiband GeoTiff with compression [https://github.com/locationtech/geotrellis/pull/2246]

	Fixed issue with BigTiff vs non-BigTiff offset value packing [https://github.com/locationtech/geotrellis/pull/2247]

API Changes

While we are trying to stick strictly to SemVer [http://semver.org/], there are slight API changes in this release. We felt that while this does break SemVer in the strictest sense, the change were not enough to warrant a 2.0 release. Our hope is in the future to be more cognizant of API changes for future releases.

	Made EPSG capatilization consistent in method names [https://github.com/locationtech/geotrellis/commit/343588b4b066851ea6b35a7d9cc671f4a6d47f2c]:

	In geotrellis.proj4.CRS, changed getEPSGCode to getEpsgCode

	In geotrellis.proj4.io.wkt.WKT, changed fromEPSGCode to fromEpsgCode and getEPSGCode to getEpsgCode

	Changed some internal but publicly visible classes dealing with GeoTiff reading [https://github.com/locationtech/geotrellis/pull/1905]

	Changed size to length in ArraySegmentBytes

	Replaced foreach on SegmentBytes with getSegments, which the caller can iterate over themselves

	Changed getDecompressedBytes to decompressGeoTiffSegment

	
	Changed some interal but publicly visible implicit classes and read methods around TiffTagReader [https://github.com/locationtech/geotrellis/pull/2247]

	
	Added as an implicit parameter to multiple locations, most publicly in TiffTagReader.read(byteReader: ByteReader, tagsStartPosition: Long)(implicit ttos: TiffTagOffsetSize). Also changed that method from being generic to always taking a Long offset.

	Moved some misplaced implicit JsonFormats [https://github.com/locationtech/geotrellis/pull/1919]

	Moved CellTypeFormat and CellSizeFormat from `` geotrellis.spark.etl.config.json`` in the spark-etl subproject to geotrellis.raster.io.json.Implicits in the raster subproject.

	Changed LazyLogger from the com.typesafe.scalalogging version to our own version [https://github.com/locationtech/geotrellis/pull/2017]

	This shouldn’t break any code, but technically is an API change.

1.0.0

Major Features

	GeoTools support
	Add Support for GeoTools SimpleFeature
#1495 [https://github.com/locationtech/geotrellis/pull/1495]

	Conversions between GeoTools GridCoverage2D and GeoTrellis Raster
types
#1502 [https://github.com/locationtech/geotrellis/pull/1502]

	Streaming GeoTiff reading
#1559 [https://github.com/locationtech/geotrellis/pull/1559]

	Windowed GeoTiff ingests into GeoTrellis layers, allowing users to
ingest large GeoTiffs
#1763 [https://github.com/locationtech/geotrellis/pull/1763]
	Reading TiffTags via MappedByteBuffer
#1541 [https://github.com/locationtech/geotrellis/pull/1541]

	Cropped Windowed GeoTiff Reading
#1559 [https://github.com/locationtech/geotrellis/pull/1559]

	Added documentation to the GeoTiff* files
#1560 [https://github.com/locationtech/geotrellis/pull/1560]

	Windowed GeoTiff Docs
#1616 [https://github.com/locationtech/geotrellis/pull/1616]

	GeoWave Raster/Vector support (experimental)
	Create GeoWave Subproject
#1542 [https://github.com/locationtech/geotrellis/pull/1542]

	Add vector capabilities to GeoWave support
#1581 [https://github.com/locationtech/geotrellis/pull/1581]

	Fix GeoWave Tests
#1665 [https://github.com/locationtech/geotrellis/pull/1665]

	GeoMesa Vector support (experimental)
	Create GeoMesa suproject
#1621 [https://github.com/locationtech/geotrellis/pull/1621]

	Moved to a JSON-configuration ETL process
	ETL Refactor
#1553 [https://github.com/locationtech/geotrellis/pull/1553]

	ETL Improvements and other issues fixes
#1647 [https://github.com/locationtech/geotrellis/pull/1647]

	Vector Tile reading and writing, file-based and as GeoTrellis layers
in RDDs.
#1622 [https://github.com/locationtech/geotrellis/pull/1622]

	File Backends
	Cassandra support
#1452 [https://github.com/locationtech/geotrellis/pull/1452]

	HBase support
#1586 [https://github.com/locationtech/geotrellis/pull/1586]

	Collections API
#1606 [https://github.com/locationtech/geotrellis/pull/1606]
	Collections polygonal summary functions
#1614 [https://github.com/locationtech/geotrellis/pull/1614]

	Collections mapalgebra focal functions
#1619 [https://github.com/locationtech/geotrellis/pull/1619]

	Add TileFeature Type
#1429 [https://github.com/locationtech/geotrellis/pull/1429]

	Added Focal calculation target type
#1601 [https://github.com/locationtech/geotrellis/pull/1601]

	Triangulation
	Voronoi diagrams and Delaunay triangulations
#1545 [https://github.com/locationtech/geotrellis/pull/1545],
#1699 [https://github.com/locationtech/geotrellis/pull/1699]

	Conforming Delaunay Triangulation
#1848 [https://github.com/locationtech/geotrellis/pull/1848]

	Euclidean distance tiles
#1552 [https://github.com/locationtech/geotrellis/pull/1552]

	Spark, Scala and Java version version support
	Move to Spark 2; Scala 2.10 deprecation
#1628 [https://github.com/locationtech/geotrellis/pull/1628]

	Java 7 deprecation
#1640 [https://github.com/locationtech/geotrellis/pull/1640]

	Color correction features:
	Histogram Equalization
#1668 [https://github.com/locationtech/geotrellis/pull/1668]

	Sigmoidal Contrast
#1681 [https://github.com/locationtech/geotrellis/pull/1681]

	Histogram matching
#1769 [https://github.com/locationtech/geotrellis/pull/1769]

	CollectNeighbors feature, allowing users to group arbitrary
values by the neighbor keys according to their SpatialComponent
#1860 [https://github.com/locationtech/geotrellis/pull/1860]

	Documentation: We moved to ReadTheDocs, and put a lot of work
into making our docs significantly better. See them
here. [http://geotrellis.readthedocs.io/en/1.0/]

Minor Additions

	Documentation improvements
	Quickstart

	Examples
	Added example for translating from SpaceTimeKey to
SpatialKey
#1549 [https://github.com/locationtech/geotrellis/pull/1549]

	doc-examples subproject; example for tiling to GeoTiff
#1564 [https://github.com/locationtech/geotrellis/pull/1564]

	Added example for focal operation on multiband layer.
#1577 [https://github.com/locationtech/geotrellis/pull/1577]

	Projections, Extents, and Layout Definitions doc
#1608 [https://github.com/locationtech/geotrellis/pull/1608]

	Added example of turning a list of features into GeoJson
#1609 [https://github.com/locationtech/geotrellis/pull/1609]

	Example: ShardingKeyIndex[K]
#1633 [https://github.com/locationtech/geotrellis/pull/1633]

	Example: VoxelKey
#1639 [https://github.com/locationtech/geotrellis/pull/1639]

	Introduce ADR concept
	ADR: HDFS Raster Layers
#1582 [https://github.com/locationtech/geotrellis/pull/1582]

	[ADR] Readers / Writers Multithreading
#1613 [https://github.com/locationtech/geotrellis/pull/1613]

	Fixes
	Fixed some markdown docs
#1625 [https://github.com/locationtech/geotrellis/pull/1625]

	parseGeoJson lives in geotrellis.vector.io
#1649 [https://github.com/locationtech/geotrellis/pull/1649]

	Parallelize reads for S3, File, and Cassandra backends
#1607 [https://github.com/locationtech/geotrellis/pull/1607]

	Kernel Density in Spark

	k-Nearest Neighbors

	Updated slick

	Added GeoTiff read/write support of TIFFTAG_PHOTOMETRIC via
GeoTiffOptions.
#1667 [https://github.com/locationtech/geotrellis/pull/1667]

	Added ability to read/write color tables for GeoTIFFs encoded with
palette photometric interpretation
#1802 [https://github.com/locationtech/geotrellis/pull/1802]

	Added ColorMap to String conversion
#1512 [https://github.com/locationtech/geotrellis/pull/1512]

	Add split by cols/rows to SplitMethods
#1538 [https://github.com/locationtech/geotrellis/pull/1538]

	Improved HDFS support
#1556 [https://github.com/locationtech/geotrellis/pull/1556]

	Added Vector Join operation for Spark
#1610 [https://github.com/locationtech/geotrellis/pull/1610]

	Added Histograms Over Fractions of RDDs of Tiles
#1692 [https://github.com/locationtech/geotrellis/pull/1692]

	Add interpretAs and withNoData methods to Tile
#1702 [https://github.com/locationtech/geotrellis/pull/1702]

	Changed GeoTiff reader to handle BigTiff
#1753 [https://github.com/locationtech/geotrellis/pull/1753]

	Added BreakMap for reclassification based on range values.
#1760 [https://github.com/locationtech/geotrellis/pull/1760]

	Allow custom save actions on ETL
#1764 [https://github.com/locationtech/geotrellis/pull/1764]

	Multiband histogram methods
#1784 [https://github.com/locationtech/geotrellis/pull/1784]

	DelayedConvert feature, allowing users to delay conversions on
tiles until a map or combine operation, so that tiles are not
iterated over unnecessarily
#1797 [https://github.com/locationtech/geotrellis/pull/1797]

	Add convenience overloads to GeoTiff companion object
#1840 [https://github.com/locationtech/geotrellis/pull/1840]

Fixes / Optimizations

	Fixed GeoTiff bug in reading NoData value if len = 4
#1490 [https://github.com/locationtech/geotrellis/pull/1490]

	Add detail to avro exception message
#1505 [https://github.com/locationtech/geotrellis/pull/1505]

	Fix: The toSpatial Method gives metadata of type
TileLayerMetadata[SpaceTimeKey]
	Custom Functor Typeclass
#1643 [https://github.com/locationtech/geotrellis/pull/1643]

	Allow Intersects(polygon: Polygon) in layer query
#1644 [https://github.com/locationtech/geotrellis/pull/1644]

	Optimize ColorMap
#1648 [https://github.com/locationtech/geotrellis/pull/1648]

	Make regex for s3 URLs handle s3/s3a/s3n
#1652 [https://github.com/locationtech/geotrellis/pull/1652]

	Fixed metadata handling on surface calculation for tile layer RDDs
#1684 [https://github.com/locationtech/geotrellis/pull/1684]

	Fixed reading GeoJson with 3d values
#1704 [https://github.com/locationtech/geotrellis/pull/1704]

	Fix to Bicubic Interpolation
#1708 [https://github.com/locationtech/geotrellis/pull/1708]

	Fixed: Band tags with values of length > 31 have additional white
space added to them
#1756 [https://github.com/locationtech/geotrellis/pull/1756]

	Fixed NoData bug in tile merging logic
#1793 [https://github.com/locationtech/geotrellis/pull/1793]

	Fixed Non-Point Pixel + Partial Cell Rasterizer Bug
#1804 [https://github.com/locationtech/geotrellis/pull/1804]

New Committers

	metasim

	lokifacio

	aeffrig

	jpolchlo

	jbouffard

	vsimko

	longcmu

	miafg

0.10.3

	PR #1611 [https://github.com/geotrellis/geotrellis/pull/1611] Any
RDD of Tiles can utilize Polygonal Summary methods.
(@fosskers)

	PR #1573 [https://github.com/geotrellis/geotrellis/pull/1573] New
foreach for MultibandTile which maps over each band at once.
(@hjaekel)

	PR #1600 [https://github.com/geotrellis/geotrellis/pull/1600] New
mapBands method to map more cleanly over the bands of a
MultibandTile.

	

0.10.2

	PR #1561 [https://github.com/geotrellis/geotrellis/pull/1561] Fix
to polygon sequence union, account that it can result in NoResult.
(1)

	PR #1585 [https://github.com/geotrellis/geotrellis/pull/1585]
Removed warnings; add proper subtyping to GetComponent and
SetComponent identity implicits; fix jai travis breakage. (1)

	PR #1569 [https://github.com/geotrellis/geotrellis/pull/1569]
Moved RDDLayoutMergeMethods functionality to object. (1)

	PR #1494 [https://github.com/geotrellis/geotrellis/pull/1494] Add
ETL option to specify upper zoom limit for raster layer ingestion
(@mbertrand)

	PR #1571 [https://github.com/geotrellis/geotrellis/pull/1571] Fix
scallop upgrade issue in spark-etl (@pomadchin)

	PR #1543 [https://github.com/geotrellis/geotrellis/pull/1543] Fix
to Hadoop LayerMover (@pomadchin)

Special thanks to new contributor @mbertrand!

0.10.1

	PR #1451 Optimize reading from compressed Bit geotiffs (@shiraeeshi)

	PR #1454 Fix issues with IDW interpolation (@lokifacio)

	PR #1457 Store FastMapHistogram counts as longs (@jpolchlo)

	PR #1460 Fixes to user defined float/double CellType parsing
(@echeipesh)

	PR #1461 Pass resampling method argument to merge in CutTiles (1)

	PR #1466 Handle Special Characters in proj4j (@jamesmcclain)

	PR #1468 Fix nodata values in codecs (@shiraeeshi)

	PR #1472 Fix typo in MultibandIngest.scala (@timothymschier)

	PR #1478 Fix month and year calculations (@shiraeeshi)

	PR #1483 Fix Rasterizer Bug (@jamesmcclain)

	PR #1485 Upgrade dependencies as part of our LocationTech CQ process
(1)

	PR #1487 Handle entire layers of NODATA (@fosskers)

	PR #1493 Added support for int32raw cell types in CellType.fromString
(@jpolchlo)

	PR #1496 Update slick (@adamkozuch, @moradology)

	PR #1498 Add ability to specify number of streaming buckets
(@moradology)

	PR #1500 Add logic to ensure use of minval/avoid repetition of breaks
(@moradology)

	PR #1501 SparkContext temporal GeoTiff format args (@echeipesh)

	PR #1510 Remove dep on cellType when specifying layoutExtent
(@fosskers)

	PR #1529 LayerUpdater fix (@pomadchin)

Special thanks to new contributors @fosskers, @adamkozuch, @jpolchlo,
@shiraeeshi, @lokifacio!

0.10.0

The long awaited GeoTrellis 0.10 release is here!

It’s been a while since the 0.9 release of GeoTrellis, and there are
many significant changes and improvements in this release. GeoTrellis
has become an expansive suite of modular components that aide users in
the building of geospatial application in Scala, and as always we’ve
focused specifically on high performance and distributed computing. This
is the first official release that supports working with Apache Spark,
and we are very pleased with the results that have come out of the
decision to support Spark as our main distributed processing engine.
Those of you who have been tuned in for a while know we started with a
custom built processing engine based on Akka actors; this original
execution engine still exists in 0.10 but is in a deprecated state in
the geotrellis-engine subproject. Along with upgrading GeoTrellis to
support Spark and handle arbitrarily-sized raster data sets, we’ve been
making improvements and additions to core functionality, including
adding vector and projection support.

It’s been long enough that release notes, stating what has changed since
0.9, would be quite unwieldy. Instead I put together a list of features
that GeoTrellis 0.10 supports. This is included in the README on the
GeoTrellis Github, but I will put them here as well. It is organized by
subproject, with more basic and core subprojects higher in the list, and
the subprojects that rely on that core functionality later in the list,
along with a high level description of each subproject.

geotrellis-proj4

	Represent a Coordinate Reference System (CRS) based on Ellipsoid,
Datum, and Projection.

	Translate CRSs to and from proj4 string representations.

	Lookup CRS’s based on EPSG and other codes.

	Transform (x, y) coordinates from one CRS to another.

geotrellis-vector

	Provides a scala idiomatic wrapper around JTS types: Point, Line
(LineString in JTS), Polygon, MultiPoint, MultiLine (MultiLineString
in JTS), MultiPolygon, GeometryCollection

	Methods for geometric operations supported in JTS, with results that
provide a type-safe way to match over possible results of geometries.

	Provides a Feature type that is the composition of a geometry and a
generic data type.

	Read and write geometries and features to and from GeoJSON.

	Read and write geometries to and from WKT and WKB.

	Reproject geometries between two CRSs.

	Geometric operations: Convex Hull, Densification, Simplification

	Perform Kriging interpolation on point values.

	Perform affine transformations of geometries

geotrellis-vector-testkit

	GeometryBuilder for building test geometries

	GeometryMatcher for scalatest unit tests, which aides in testing
equality in geometries with an optional threshold.

geotrellis-raster

	Provides types to represent single- and multi-band rasters,
supporting Bit, Byte, UByte, Short, UShort, Int, Float, and Double
data, with either a constant NoData value (which improves
performance) or a user defined NoData value.

	Treat a tile as a collection of values, by calling “map” and
“foreach”, along with floating point valued versions of those methods
(separated out for performance).

	Combine raster data in generic ways.

	Render rasters via color ramps and color maps to PNG and JPG images.

	Read GeoTiffs with DEFLATE, LZW, and PackBits compression, including
horizontal and floating point prediction for LZW and DEFLATE.

	Write GeoTiffs with DEFLATE or no compression.

	Reproject rasters from one CRS to another.

	Resample of raster data.

	Mask and Crop rasters.

	Split rasters into smaller tiles, and stitch tiles into larger
rasters.

	Derive histograms from rasters in order to represent the distribution
of values and create quantile breaks.

	Local Map Algebra operations: Abs, Acos, Add, And, Asin, Atan, Atan2,
Ceil, Cos, Cosh, Defined, Divide, Equal, Floor, Greater,
GreaterOrEqual, InverseMask, Less, LessOrEqual, Log, Majority, Mask,
Max, MaxN, Mean, Min, MinN, Minority, Multiply, Negate, Not, Or, Pow,
Round, Sin, Sinh, Sqrt, Subtract, Tan, Tanh, Undefined, Unequal,
Variance, Variety, Xor, If

	Focal Map Algebra operations: Hillshade, Aspect, Slope, Convolve,
Conway’s Game of Life, Max, Mean, Median, Mode, Min, MoransI,
StandardDeviation, Sum

	Zonal Map Algebra operations: ZonalHistogram, ZonalPercentage

	Operations that summarize raster data intersecting polygons: Min,
Mean, Max, Sum.

	Cost distance operation based on a set of starting points and a
friction raster.

	Hydrology operations: Accumulation, Fill, and FlowDirection.

	Rasterization of geometries and the ability to iterate over cell
values covered by geometries.

	Vectorization of raster data.

	Kriging Interpolation of point data into rasters.

	Viewshed operation.

	RegionGroup operation.

geotrellis-raster-testkit

	Build test raster data.

	Assert raster data matches Array data or other rasters in scalatest.

geotrellis-spark

	Generic way to represent key value RDDs as layers, where the key
represents a coordinate in space based on some uniform grid layout,
optionally with a temporal component.

	Represent spatial or spatiotemporal raster data as an RDD of raster
tiles.

	Generic architecture for saving/loading layers RDD data and metadata
to/from various backends, using Spark’s IO API with Space Filling
Curve indexing to optimize storage retrieval (support for Hilbert
curve and Z order curve SFCs). HDFS and local file system are
supported backends by default, S3 and Accumulo are supported backends
by the geotrellis-s3 and geotrellis-accumulo projects,
respectively.

	Query architecture that allows for simple querying of layer data by
spatial or spatiotemporal bounds.

	Perform map algebra operations on layers of raster data, including
all supported Map Algebra operations mentioned in the
geotrellis-raster feature list.

	Perform seamless reprojection on raster layers, using neighboring
tile information in the reprojection to avoid unwanted NoData cells.

	Pyramid up layers through zoom levels using various resampling
methods.

	Types to reason about tiled raster layouts in various CRS’s and
schemes.

	Perform operations on raster RDD layers: crop, filter, join, mask,
merge, partition, pyramid, render, resample, split, stitch, and tile.

	Polygonal summary over raster layers: Min, Mean, Max, Sum.

	Save spatially keyed RDDs of byte arrays to z/x/y files into HDFS or
the local file system. Useful for saving PNGs off for use as map
layers in web maps or for accessing GeoTiffs through z/x/y tile
coordinates.

	Utilities around creating spark contexts for applications using
GeoTrellis, including a Kryo registrator that registers most types.

geotrellis-spark-testkit

	Utility code to create test RDDs of raster data.

	Matching methods to test equality of RDDs of raster data in scalatest
unit tests.

geotrellis-accumulo

	Save and load layers to and from Accumulo. Query large layers
efficiently using the layer query API.

geotrellis-cassandra

Save and load layers to and from Casandra. Query large layers
efficiently using the layer query API.

geotrellis-s3

	Save/load raster layers to/from the local filesystem or HDFS using
Spark’s IO API.

	Save spatially keyed RDDs of byte arrays to z/x/y files in S3. Useful
for saving PNGs off for use as map layers in web maps.

geotrellis-etl

	Parse command line options for input and output of ETL (Extract,
Transform, and Load) applications

	Utility methods that make ETL applications easier for the user to
build.

	Work with input rasters from the local file system, HDFS, or S3

	Reproject input rasters using a per-tile reproject or a seamless
reprojection that takes into account neighboring tiles.

	Transform input rasters into layers based on a ZXY layout scheme

	Save layers into Accumulo, S3, HDFS or the local file system.

geotrellis-shapefile

	Read geometry and feature data from shapefiles into GeoTrellis types
using GeoTools.

geotrellis-slick

	Save and load geometry and feature data to and from PostGIS using the
slick scala database library.

	Perform PostGIS ST_ operations in PostGIS through scala.

Contributing

We value all kinds of contributions from the community, not just actual
code. Perhaps the easiest and yet one of the most valuable ways of
helping us improve GeoTrellis is to ask questions, voice concerns or
propose improvements on the Mailing
List [https://locationtech.org/mailman/listinfo/geotrellis-user].

If you do like to contribute actual code in the form of bug fixes, new
features or other patches this page gives you more info on how to do it.

Building GeoTrellis

	Install SBT (the master branch is currently built with SBT 0.13.12).

	Check out this repository.

	Pick the branch corresponding to the version you are targeting

	Run sbt test to compile the suite and run all tests.

Style Guide

We try to follow the Scala Style
Guide as closely as possible,
although you will see some variations throughout the codebase. When in
doubt, follow that guide.

Git Branching Model

The GeoTrellis team follows the standard practice of using the
master branch as main integration branch.

Git Commit Messages

We follow the ‘imperative present tense’ style for commit messages.
(e.g. “Add new EnterpriseWidgetLoader instance”)

Issue Tracking

If you find a bug and would like to report it please go there and create
an issue. As always, if you need some help join us on
Gitter [https://gitter.im/locationtech/geotrellis] to chat with a
developer.

Pull Requests

If you’d like to submit a code contribution please fork GeoTrellis and
send us pull request against the master branch. Like any other open
source project, we might ask you to go through some iterations of
discussion and refinement before merging.

As part of the Eclipse IP Due Diligence process, you’ll need to do some
extra work to contribute. This is part of the requirement for Eclipse
Foundation projects (see this page in the Eclipse
wiki [https://wiki.eclipse.org/Development_Resources/Handling_Git_Contributions#Git]
You’ll need to sign up for an Eclipse account with the same email you
commit to github with. See the Eclipse Contributor Agreement text
below. Also, you’ll need to signoff on your commits, using the
git commit -s flag. See
https://help.github.com/articles/signing-tags-using-gpg/ for more info.

Eclipse Contributor Agreement (ECA)

Contributions to the project, no matter what kind, are always very
welcome. Everyone who contributes code to GeoTrellis will be asked to
sign the Eclipse Contributor Agreement. You can electronically sign the
Eclipse Contributor Agreement
here [https://www.eclipse.org/legal/ECA.php].

Editing these Docs

Contributions to these docs are welcome as well. To build them on your own
machine, ensure that sphinx and make are installed.

Installing Dependencies

Ubuntu 16.04

> sudo apt-get install python-sphinx python-sphinx-rtd-theme

Arch Linux

> sudo pacman -S python-sphinx python-sphinx_rtd_theme

MacOS

brew doesn’t supply the sphinx binaries, so use pip here.

Pip

> pip install sphinx sphinx_rtd_theme

Building the Docs

Assuming you’ve cloned the GeoTrellis repo [https://github.com/locationtech/geotrellis], you can now build the docs
yourself. Steps:

	Navigate to the docs/ directory

	Run make html

	View the docs in your browser by opening _build/html/index.html

Note

Changes you make will not be automatically applied; you will have
to rebuild the docs yourself. Luckily the docs build in about a second.

File Structure

When adding or editing documentation, keep in mind the following file
structure:

	docs/tutorials/ contains simple beginner tutorials with concrete
goals

	docs/guide/ contains detailed explanations of GeoTrellis concepts

	docs/architecture contains in-depth discussion on GeoTrellis
implementation details

Setup

Welcome to GeoTrellis, the Scala [http://www.scala-lang.org/]
library for high-performance geographic data processing. Being a
library, users import GeoTrellis and write their own Scala applications
with it. This guide will help you get up and running with a basic
GeoTrellis development environment.

Requirements

	Java
8 [http://www.oracle.com/technetwork/java/javase/overview/index.html].
GeoTrellis code won’t function with Java 7 or below. You can test
your Java version by entering the following in a Linux or Mac
terminal:

> javac -version
javac 1.8.0_102

You want to see 1.8 like above.

	Apache Spark 2 [http://spark.apache.org/downloads.html]. This is
if you plan to run ingests (as shown in our ETL
tutorial) or write a serious application.
Otherwise, fetching Spark dependencies for playing with GeoTrellis is
handled automatically, as shown in our Quick-Start Guide.

When running more involved applications, spark-submit should be on
your PATH:

> which spark-submit
/bin/spark-submit

Using Scala

GeoTrellis is a Scala library, so naturally you must write your
applications in Scala. If you’re new to Scala, we recommend the
following:

	The official Scala
tutorials [http://www.scala-lang.org/documentation/]

	The Scala
Cookbook [http://shop.oreilly.com/product/0636920026914.do] as a
handy language reference

	99 Problems in Scala [http://aperiodic.net/phil/scala/s-99/] to
develop basic skills in Functional Programming

GeoTrellis Project Template

The
geotrellis-sbt-template [https://github.com/geotrellis/geotrellis-sbt-template]
repo provides a simple GeoTrellis project template. It can be used to
experiment with GeoTrellis, or to write full applications. Get it with:

git clone https://github.com/geotrellis/geotrellis-sbt-template.git

You don’t need sbt installed to write a GeoTrellis app, since this
template includes an sbt bootstrap script. It is used like regular
SBT, and comes with a few extra commands:

	Enter the SBT shell: ./sbt

	Run tests: ./sbt test

	Force Scala 2.11 (default): ./sbt -211

	Force Scala 2.10: ./sbt -210

À la Carte GeoTrellis Modules

GeoTrellis is actually a library suite made up of many modules. We’ve
designed it such that you can depend on as much or as little of
GeoTrellis as your project needs. To depend on a new module, add it to
the libraryDependencies list in your build.sbt:

libraryDependencies ++= Seq(
 "org.locationtech.geotrellis" %% "geotrellis-spark" % "1.0.0",
 "org.locationtech.geotrellis" %% "geotrellis-s3" % "1.0.0", // now we can use Amazon S3!
 "org.apache.spark" %% "spark-core" % "2.1.0" % "provided",
 "org.scalatest" %% "scalatest" % "3.0.0" % "test"
)

Click here for a full list and explanation of each GeoTrellis
module.

Now that you’ve gotten a simple GeoTrellis environment set up, it’s time
to get your feet wet with some of its capabilities.

Quick Start

For most users, it is not necessary to download the GeoTrellis source
code to make use of it. The purpose of this document is to describe the
fastest means to get a running environment for various use cases.

Wetting your Feet

By far, the quickest route to being able to play with GeoTrellis is to
follow these steps:

	Use git to clone our project template
repository [https://github.com/geotrellis/geotrellis-sbt-template]:

git clone git@github.com:geotrellis/geotrellis-sbt-template

	Once available, from the root directory of the cloned repo, MacOSX
and Linux users may launch the sbt script contained therein; this
will start an SBT session, installing it if it has not already been.

	Once SBT is started, issue the console command; this will start
the Scala interpreter.

At this point, you should be able to issue the command
import geotrellis.vector._ without raising an error. This will make
the contents of that package available. For instance, one may create a
point at the origin by typing Point(0, 0).

This same project can be used as a template for writing simple programs.
Under the project root directory is the src directory which has
subtrees rooted at src/main and src/test. The former is where
application code should be located, and the latter contains unit tests
for any modules that demand it. The SBT documentation will describe how
to run application or test code.

Hello Raster, Revisited

On the landing page, an example of an interactive
session with GeoTrellis was shown. We’re going to revisit that example
here in more detail, using the various parts of that example as a means
to highlight library features and to marshal beginners to the sections
of interest in the documentation.

It is first necessary to expose functionality from the relevant packages
(a complete list packages and the summary of their contents may be found
here):

scala> import geotrellis.raster._
import geotrellis.raster._

scala> import geotrellis.raster.mapalgebra.focal._
import geotrellis.raster.mapalgebra.focal._

Much of GeoTrellis’ core functionality lies in the raster library.
Rasters are regular grids of
data that have some notion of their spatial extent. When working with
rasters, one can operate on the grid of data separately from the spatial
information. The grid of data held inside a raster is called a Tile. We
can create an example Tile as follows:

scala> val nd = NODATA
nd: Int = -2147483648

scala> val input = Array[Int](
 nd, 7, 1, 1, 3, 5, 9, 8, 2,
 9, 1, 1, 2, 2, 2, 4, 3, 5,
 3, 8, 1, 3, 3, 3, 1, 2, 2,
 2, 4, 7, 1, nd, 1, 8, 4, 3)
input: Array[Int] = Array(-2147483648, 7, 1, 1, 3, 5, 9, 8, 2, 9, 1, 1, 2,
2, 2, 4, 3, 5, 3, 8, 1, 3, 3, 3, 1, 2, 2, 2, 4, 7, 1, -2147483648, 1, 8, 4, 3)

scala> val iat = IntArrayTile(input, 9, 4) // 9 and 4 here specify columns and rows
iat: geotrellis.raster.IntArrayTile = IntArrayTile(I@278434d0,9,4)

// The asciiDraw method is mostly useful when you're working with small tiles
// which can be taken in at a glance
scala> iat.asciiDraw()
res0: String =
" ND 7 1 1 3 5 9 8 2
 9 1 1 2 2 2 4 3 5
 3 8 1 3 3 3 1 2 2
 2 4 7 1 ND 1 8 4 3
"

Note that not every cell location in a tile needs to be specified; this
is the function of NODATA. Also be aware that NODATA‘s value
varies by CellType. In this
case, the use of IntArrayTile implies an IntCellType which
defines NODATA as seen above.

As a GIS package, GeoTrellis provides a number of map
algebra operations. In the
following example, a neighborhood is defined as the region of interest
for a focal operation, the focal mean operation is performed, and a
value is queried:

scala> val focalNeighborhood = Square(1) // a 3x3 square neighborhood
focalNeighborhood: geotrellis.raster.op.focal.Square =
 O O O
 O O O
 O O O

scala> val meanTile = iat.focalMean(focalNeighborhood)
meanTile: geotrellis.raster.Tile = DoubleArrayTile(D@7e31c125,9,4)

scala> meanTile.getDouble(0, 0) // Should equal (1 + 7 + 9) / 3
res1: Double = 5.666666666666667

In this example, note that the NODATA value was simply ignored in the
computation of the mean.

This is only a very simple example of what is possible with GeoTrellis.
To learn more, it is recommended that the reader continue on with the
core concepts section. Another example
geared towards new users is available in the kernel density
tutorial.

Using GeoTrellis with Apache Spark

GeoTrellis is meant for use in distributed environments employing Apache
Spark. It’s beyond the scope of a quickstart guide to describe how to
set up or even to use Spark, but there are two paths to getting a REPL
in which one can interact with Spark.

First: from the geotrellis/geotrellis-sbt-template project root
directory, issue ./sbt to start SBT. Once SBT is loaded, issue the
test:console command. This will raise a REPL that will allow for the
construction of a SparkContext using the following commands:

val conf = new org.apache.spark.SparkConf()
conf.setMaster("local[*]")
implicit val sc = geotrellis.spark.util.SparkUtils.createSparkContext("Test console", conf)

It will then be possible to issue a command such as
sc.parallelize(Array(1,2,3)).

Alternatively, if you have source files inside a project directory tree
(perhaps derived from geotrellis-sbt-template), you may issue the
assembly command from sbt to produce a fat .jar file, which will
appear in the target/scala-<version>/ directory. That jar file can
be supplied to spark-shell --jars <jarfile>, given you have Spark
installed on your local machine. That same jar file could be supplied to
spark-submit if you are running on a remote Spark master. Again, the
ins-and-outs of Spark are beyond the scope of this document, but these
pointers might provide useful jumping off points.

Kernel Density

This document provides a detailed example on how to build a raster from
point data using kernel density estimation. Though that is the
ostensible point, it also provides a brief introduction to working with
rasters, including how to tile a raster and how to use the result as the
basis for a computation in Spark.

Kernel density is one way to convert a set of points (an instance of
vector data) into a raster. In this process, at every point in the point
set, the contents of what is effectively a small Tile (called a Kernel)
containing a predefined pattern are added to the grid cells surrounding
the point in question (i.e., the kernel is centered on the tile cell
containing the point and then added to the Tile). This is an example of
a local map algebra operation. Assuming that the points were sampled
according to a probability density function, and if the kernel is
derived from a Gaussian function, this can develop a smooth
approximation to the density function that the points were sampled from.
(Alternatively, each point can be given a weight, and the kernel values
can be scaled by that weight before being applied to the tile, which we
will do below.)

To begin, let’s generate a random collection of points with weights in
the range (0, 32). To capture the idea of “a point with weight”, we
create a PointFeature[Double] (which is an alias of
Feature[Point, Double]). Features, in general, combine a geometry
with an attribute value in a type-safe way.

import geotrellis.vector._
import scala.util._

val extent = Extent(-109, 37, -102, 41) // Extent of Colorado

def randomPointFeature(extent: Extent): PointFeature[Double] = {
 def randInRange (low: Double, high: Double): Double = {
 val x = Random.nextDouble
 low * (1-x) + high * x
 }
 Feature(Point(randInRange(extent.xmin, extent.xmax), // the geometry
 randInRange(extent.ymin, extent.ymax)),
 Random.nextInt % 16 + 16) // the weight (attribute)
}

val pts = (for (i <- 1 to 1000) yield randomPointFeature(extent)).toList

The choice of extent is largely arbitrary in this example, but note that
the coordinates here are taken with respect to the standard (longitude,
latitude) that we normally consider. Other coordinate representations
are available, and it might be useful to investigate coordinate
reference systems (CRSs) if you want more details. Some operations in
GeoTrellis require that a CRS object be constructed to place your
rasters in the proper context. For (longitude, latitude) coordinates,
either geotrellis.proj4.CRS.fromName("EPSG:4326") or
geotrellis.proj4.LatLng will generate the desired CRS.

Next, we will create a tile containing the kernel density estimate:

import geotrellis.raster._
import geotrellis.raster.mapalgebra.focal.Kernel

val kernelWidth: Int = 9

/* Gaussian kernel with std. deviation 1.5, amplitude 25 */
val kern: Kernel = Kernel.gaussian(kernelWidth, 1.5, 25)

val kde: Tile = pts.kernelDensity(kern, RasterExtent(extent, 700, 400))

This populates a 700x400 tile with the desired kernel density estimate.
In order to view the resulting file, a simple method is to write the
tile out to PNG or TIFF. In the following snippet, a PNG is created in
the directory sbt was launched in (the working directory), where the
values of the tile are mapped to colors that smoothly interpolate from
blue to yellow to red.

import geotrellis.raster.render._

val colorMap = ColorMap(
 (0 to kde.findMinMax._2 by 4).toArray,
 ColorRamps.HeatmapBlueToYellowToRedSpectrum
)

kde.renderPng(colorMap).write("test.png")

The advantage of using a TIFF output is that it will be tagged with the
extent and CRS, and the resulting image file can be overlayed on a map
in a viewing program such as QGIS. That output is generated by the
following statements.

import geotrellis.raster.io.geotiff._

GeoTiff(kde, extent, LatLng).write("test.tif")

Subdividing Tiles

The above example focuses on a toy problem that creates a small raster
object. However, the purpose of GeoTrellis is to enable the processing
of large-scale datasets. In order to work with large rasters, it will be
necessary to subdivide a region into a grid of tiles so that the
processing of each piece may be handled by different processors which
may, for example, reside on remote machines in a cluster. This section
explains some of the concepts involved in subdividing a raster into a
set of tiles.

We will still use an Extent object to set the bounds of our raster
patch in space, but we must now specify how that extent is broken up
into a grid of Tiles. This requires a statement of the form:

import geotrellis.spark.tiling._

val tl = TileLayout(7, 4, 100, 100)

Here, we have specified a 7x4 grid of Tiles, each of which has 100x100
cells. This will eventually be used to divide the earlier monolithic
700x400 Tile (kde) into 28 uniformly-sized subtiles. The TileLayout
is then combined with the extent in a LayoutDefinition object:

val ld = LayoutDefinition(extent, tl)

In preparation for reimplementing the previous kernel density estimation
with this structure, we note that each point in pts lies at the
center of a kernel, which covers some non-zero area around the points.
We can think of each point/kernel pair as a small square extent centered
at the point in question with a side length of 9 pixels (the arbitrary
width we chose for our kernel earlier). Each pixel, however, covers some
non-zero area of the map, which we can also think of as an extent with
side lengths given in map coordinates. The dimensions of a pixel’s
extent are given by the cellwidth and cellheight members of a
LayoutDefinition object.

By incorporating all these ideas, we can create the following function
to generate the extent of the kernel centered at a given point:

def pointFeatureToExtent[D](kwidth: Double, ld: LayoutDefinition, ptf: PointFeature[D]): Extent = {
 val p = ptf.geom

 Extent(p.x - kwidth * ld.cellwidth / 2,
 p.y - kwidth * ld.cellheight / 2,
 p.x + kwidth * ld.cellwidth / 2,
 p.y + kwidth * ld.cellheight / 2)
}

def ptfToExtent[D](p: PointFeature[D]) = pointFeatureToExtent(9, ld, p)

When we consider the kernel extent of a point in the context of a
LayoutDefinition, it’s clear that a kernel’s extent may overlap more
than one tile in the layout. To discover the tiles that a given point’s
kernel extents overlap, LayoutDefinition provides a mapTransform
object. Among the methods of mapTransform is the ability to determine
the indices of the subtiles in the TileLayout that overlap a given
extent. Note that the tiles in a given layout are indexed by
SpatialKeys, which are effectively (Int,Int) pairs giving the
(column,row) of each tile as follows:

+-------+-------+-------+ +-------+
| (0,0) | (1,0) | (2,0) | . . . | (6,0) |
+-------+-------+-------+ +-------+
| (0,1) | (1,1) | (2,1) | . . . | (6,1) |
+-------+-------+-------+ +-------+

+-------+-------+-------+ +-------+
| (0,3) | (1,3) | (2,3) | . . . | (6,3) |
+-------+-------+-------+ +-------+

Specifically, in our running example,
ld.mapTransform(ptfToExtent(Feature(Point(-108, 38), 100.0)))
returns GridBounds(0, 2, 1, 3), indicating that every cell with
columns in the range [0,1] and rows in the range [2,3] are intersected
by the kernel centered on the point (-108, 38)—that is, the 2x2 block
of tiles at the lower left of the layout.

In order to proceed with the kernel density estimation, it is necessary
to then convert the list of points into a collection of
(SpatialKey, List[PointFeature[Double]]) that gathers all the points
that have an effect on each subtile, as indexed by their SpatialKeys.
The following snippet accomplishes that.

import geotrellis.spark._

def ptfToSpatialKey[D](ptf: PointFeature[D]): Seq[(SpatialKey,PointFeature[D])] = {
 val ptextent = ptfToExtent(ptf)
 val gridBounds = ld.mapTransform(ptextent)

 for {
 (c, r) <- gridBounds.coords
 if r < tl.totalRows
 if c < tl.totalCols
 } yield (SpatialKey(c,r), ptf)
}

val keyfeatures: Map[SpatialKey, List[PointFeature[Double]]] =
 pts
 .flatMap(ptfToSpatialKey)
 .groupBy(_._1)
 .map { case (sk, v) => (sk, v.unzip._2) }

Now, all the subtiles may be generated in the same fashion as the
monolithic tile case above.

val keytiles = keyfeatures.map { case (sk, pfs) =>
 (sk, pfs.kernelDensity(
 kern,
 RasterExtent(ld.mapTransform(sk), tl.tileDimensions._1, tl.tileDimensions._2)
))
}

Finally, it is necessary to combine the results. Note that, in order to
produce a 700x400 tile that is identical to the simpler, non-tiled case,
every SpatialKey must be represented in the map, or the result may not
span the full range. This is only necessary if it is important to
generate a tile that spans the full extent.

import geotrellis.spark.stitch.TileLayoutStitcher

val tileList =
 for {
 r <- 0 until ld.layoutRows
 c <- 0 until ld.layoutCols
 } yield {
 val k = SpatialKey(c,r)
 (k, keytiles.getOrElse(k, IntArrayTile.empty(tl.tileCols, tl.tileRows)))
 }

val stitched = TileLayoutStitcher.stitch(tileList)._1

It is now the case that stitched is identical to kde.

Distributing Computation via Apache Spark

As mentioned, the reason for introducing this more complicated version
of kernel density estimation was to enable distributed processing of the
kernel stamping process. Each subtile could potentially be handled by a
different node in a cluster, which would make sense if the dataset in
question were, say, the location of individual trees, requiring a huge
amount of working memory. By breaking the domain into smaller pieces, we
can exploit the distributed framework provided by Apache Spark to spread
the task to a number of machines. This will also provide fault tolerant,
rapid data processing for real-time and/or web-based applications. Spark
is much too big a topic to discuss in any detail here, so the curious
reader is advised to search the web for more information. Our concern
falls on how to write code to exploit the structures provided by Spark,
specifically Resilient Distributed Datasets, or RDDs. An RDD is a
distributed collection, with all of the usual features of a
collection—e.g., map, reduce—as well as distributed versions of certain
sequential operations—e.g., aggregate is akin to foldLeft for
standard collections. In order to create an RDD, one will call the
parallelize() method on a SparkContext object, which can be
generated by the following set of statements.

import org.apache.spark.{SparkConf, SparkContext}

val conf = new SparkConf().setMaster("local").setAppName("Kernel Density")
val sc = new SparkContext(conf)

In our case, we have a collection of PointFeatures that we wish to
parallelize, so we issue the command

import org.apache.spark.rdd.RDD

val pointRdd = sc.parallelize(pts, 10)

Here, the 10 indicates that we want to distribute the data, as 10
partitions, to the available workers. A partition is a subset of the
data in an RDD that will be processed by one of the workers, enabling
parallel, distributed computation, assuming the existence of a pool of
workers on a set of machines. If we exclude this value, the default
parallelism will be used, which is typically the number of processors,
though in this local example, it defaults to one.

In order to perform the same task as in the previous section, but in
parallel, we will approach the problem in much the same way: points will
be assigned an extent corresponding to the extent of the associated
kernel, those points will be assigned SpatialKeys based on which
subtiles their kernels overlap, and each kernel will be applied to the
tile corresponding to its assigned SpatialKey. Earlier, this process was
effected by a flatMap followed by a groupBy and then a map. This very
same procedure could be used here, save for the fact that groupBy, when
applied to an RDD, triggers an expensive, slow, network-intensive
shuffling operation which collects items with the same key on a single
node in the cluster. Instead, a fold-like operation will be used:
aggregateByKey, which has a signature of
RDD[(K, U)] => T => ((U, T) => T, (T, T) => T) => RDD[(K, T)]. That
is, we begin with an RDD of key/value pairs, provide a “zero value” of
type T, the type of the final result, and two functions: (1) a
sequential operator, which uses a single value of type U to update
an accumulated value of type T, and (2) a combining operator,
which merges two accumulated states of type T. In our case,
U = PointFeature[Double] and T = Tile; this implies that the
insertion function is a kernel stamper and the merging function is a
tile adder.

import geotrellis.raster.density.KernelStamper

def stampPointFeature(
 tile: MutableArrayTile,
 tup: (SpatialKey, PointFeature[Double])
): MutableArrayTile = {
 val (spatialKey, pointFeature) = tup
 val tileExtent = ld.mapTransform(spatialKey)
 val re = RasterExtent(tileExtent, tile)
 val result = tile.copy.asInstanceOf[MutableArrayTile]

 KernelStamper(result, kern)
 .stampKernelDouble(re.mapToGrid(pointFeature.geom), pointFeature.data)

 result
}

import geotrellis.raster.mapalgebra.local.LocalTileBinaryOp

object Adder extends LocalTileBinaryOp {
 def combine(z1: Int, z2: Int) = {
 if (isNoData(z1)) {
 z2
 } else if (isNoData(z2)) {
 z1
 } else {
 z1 + z2
 }
 }

 def combine(r1: Double, r2:Double) = {
 if (isNoData(r1)) {
 r2
 } else if (isNoData(r2)) {
 r1
 } else {
 r1 + r2
 }
 }
}

def sumTiles(t1: MutableArrayTile, t2: MutableArrayTile): MutableArrayTile = {
 Adder(t1, t2).asInstanceOf[MutableArrayTile]
}

Note that we require a custom Adder implementation because the built-in
tile summation operator returns NODATA if either of the cells being
added contain a NODATA value themselves.

Creating the desired result is then a matter of the following series of
operations on pointRdd:

val tileRdd: RDD[(SpatialKey, Tile)] =
 pointRdd
 .flatMap(ptfToSpatialKey)
 .mapPartitions({ partition =>
 partition.map { case (spatialKey, pointFeature) =>
 (spatialKey, (spatialKey, pointFeature))
 }
 }, preservesPartitioning = true)
 .aggregateByKey(ArrayTile.empty(DoubleCellType, ld.tileCols, ld.tileRows))
 (stampPointFeature, sumTiles)
 .mapValues{ tile: MutableArrayTile => tile.asInstanceOf[Tile] }

The mapPartitions operation simply applies a transformation to an
RDD without triggering any kind of shuffling operation. Here, it is
necessary to make the SpatialKey available to stampPointFeature so
that it can properly determine the pixel location in the corresponding
tile.

We would be finished here, except that RDDs inside GeoTrellis are
required to carry along a Metadata object that describes the context of
the RDD. This is created like so:

import geotrellis.proj4.LatLng

val metadata = TileLayerMetadata(DoubleCellType,
 ld,
 ld.extent,
 LatLng,
 KeyBounds(SpatialKey(0,0),
 SpatialKey(ld.layoutCols-1,
 ld.layoutRows-1)))

To combine the RDD and the metadata, we write
val resultRdd = ContextRDD(tileRdd, metadata).

This resulting RDD is essentially the object of interest, though it is
possible to write resultRDD.stitch to produce a single merged tile.
In the general case, however, the RDD may cover an area so large and in
sufficient resolution that the result of stitching would be too large
for working memory. In these sorts of applications, the usual work flow
is to save the tiles off to one of the distributed back ends (Accumulo,
S3, HDFS, etc.). Tiles thus stored may then be used in further
processing steps or be served to applications (e.g., web mapping
applications). If it is absolutely necessary, the individual tiles may
be saved off as GeoTIFFs and stitched via an application like GDAL.

A Note on Running Example Code

To run the above test code, it is necessary to have a compatible
environment. Spark code may experience failures if run solely in the
Scala interpreter, as accessed through SBT’s console command. One
way to ensure proper execution is to run in spark-shell, a Scala
environment which provides a SparkContext made available through the
variable sc. Another way is to compile the application into a JAR
file using sbt assembly, and to use spark-submit. This latter
option is the preferred method for Spark applications, in general, but
for the purposes of trying out the provided code samples,
spark-shell is the more sensible choice. The use of spark-submit
is beyond the scope of this documentation, but many resources are
available on the internet for learning this tool.

In either event, it will be necessary to install Spark in your local
environment to run the code above. Once that is done, you will need to
clone the GeoTrellis repository from
Github [https://github.com/geotrellis/geotrellis]. From the root
directory of that project, execute the provided sbt script. Once SBT
is loaded, the following commands can be executed:

project spark-etl
assembly

This packages the required class files into a JAR file. Now, again from
the GeoTrellis source tree root directory, issue the command

spark-shell --jars spark-etl/target/scala-2.11/geotrellis-spark-etl-assembly-[version].jar

From the resulting interpreter prompt, perform the following imports:

import geotrellis.raster._
import geotrellis.vector._
import geotrellis.proj4._
import geotrellis.spark._
import geotrellis.spark.util._
import geotrellis.spark.tiling._

It should then be possible to input the example code from above
(excluding the creation of a SparkContext) and get the desired result.

A Note on Implementation

The procedures that we’ve been considering above have been implemented
in GeoTrellis and are located in
raster/src/main/scala/geotrellis/raster/density/ and
spark/src/main/scala/geotrellis/spark/density. This final
implementation is more complete than the simple version presented here,
as it handles type conversion for different tile cell types and is
augmented with convenience functions that are provided through the use
of the MethodExtensions facility. Briefly, method extensions allow
for implicit conversion between Traversable[PointFeature[Num]]
(where Num is either Int or Double) and a wrapper class
which provides a method
kernelDensity: (Kernel, RasterExtent) => Tile. Thus, any traversable
collection can be treated as if it possesses a kernelDensity method.
This pattern appears all throughout GeoTrellis, and provides some
welcome syntactic sugar.

Furthermore, the final implementation is more flexible with regard to
the type of data used. Both the PointFeature parameter and the Tile
CellType may be of integral or floating-point type. See the code for
details.

Reading GeoTiffs

This tutorial will go over how to read GeoTiff files using GeoTrellis on
your local filesystem. It assumes that you already have the environment
needed to run these examples. If not, please see our Setup
Guide to get GeoTrellis working on your system. Also, this
tutorial uses GeoTiffs from the raster-test project from GeoTrellis.
If you have not already done so, please clone GeoTrellis
here [https://github.com/locationtech/geotrellis] so that you can
access the needed files.

One of the most common methods of storing geospatial information is
through GeoTiffs. This is reflected throughout the GeoTrellis library
where many of its features can work with GeoTiffs. Which would mean that
there would have to be many different ways to read in GeoTiff, and
indeed there are! In the following document, we will go over the methods
needed to load in a GeoTiff from your local filesystem.

Before we start, open a Scala REPL in the Geotrellis directory.

Reading For the First Time

Reading a local GeoTiff is actually pretty easy. You can see how to do
it below.

import geotrellis.raster.io.geotiff.reader.GeoTiffReader
import geotrellis.raster.io.geotiff._

val path: String = "path/to/geotrellis/raster-test/data/geotiff-test-files/lzw_int32.tif"
val geoTiff: SinglebandGeoTiff = GeoTiffReader.readSingleband(path)

And that’s it! Not too bad at all really, just four lines of code. Even
still, though, let’s break this down line-by-line so we can see what
exactly is going on.

import geotrellis.raster.io.geotiff.reader.GeoTiffReader

This import statement brings in GeoTiffReader from
geotrellis.raster.io.geotiff.reader so that we can use it in the
REPL. As the name implys, GeoTiffReader is the object that actually
reads the GeoTiff. If you ever wonder about how we analyze and process
GeoTiffs, then geotrellis.raster.io.geotiff would be the place to
look. Here’s a
link [https://github.com/locationtech/geotrellis/tree/master/raster/src/main/scala/geotrellis/raster/io/geotiff].

import geotrellis.raster.io.geotiff._

The next import statement loads in various data types that we need so
that we can assign them to our vals.

Okay, so we brought in the object that will give us our GeoTiff, now we
just need to supply it what to read. This is where the next line of code
comes into play.

val path: String = "path/to/geotrellis/raster-test/data/geotiff-test-files/lzw_int32.tif"

Our path variable is a String that contains the file path to a
GeoTiff in geotrellis.raster-test. GeoTiffReader will use this
value then to read in our GeoTiff. There are more types of paramters
GeoTiffReader can accept, however. These are Array[Byte]s and
ByteReaders. We will stick with Strings for this lesson, but
Array[Byte] is not that much different. It’s just all of the bytes
within your file held in an Array.

The last part of our four line coding escapade is:

val geoTiff: SinglebandGeoTiff = GeoTiffReader.readSingleband(path)

This line assigns the variable, geoTiff, to the file that is being
read in. Notice the geoTiff‘s type, though. It is
SinglebandGeoTiff. Why does geoTiff have this type? It’s because
in GeoTrellis, SinglebandGeoTiffs and MutlibandGeoTiffs are
two seperate subtypes of GeoTiff. In case you were wondering about
the second import statement earlier, this is where is comes into
play; as these two types are defined within
geotrellis.raster.io.geotiff.

Great! We have a SinglebandGeoTiff. Let’s say that we have a
MultibandGeoTiff, though; let’s use the code from above to read it.

import geotrellis.raster.io.geotiff.reader.GeoTiffReader
import geotrellis.raster.io.geotiff._

// now a MultibandGeoTiff!
val path: String = "path/to/raster-test/data/geotiff-test-files/3bands/3bands-striped-band.tif"
val geoTiff = GeoTiffReader.readSingleband(path)

If we run this code, what do you think will happen? The result may surprise
you, we get back a SinglebandGeoTiff! When told to read a
SinglebandGeoTiff from a MultibandGeoTiff without a return type, the
GeoTiffReader will just read in the first band of the file and return
that. Thus, it is important to keep in mind what kind of GeoTiff you are
working with, or else you could get back an incorrect result.

To remedy this issue, we just have to change the method call and return
type so that GeoTiffReader will read in all of the bands of our
GeoTiff.

val geoTiff: MultibandGeoTiff = GeoTiffReader.readMultiband(path)

And that’s it! We now have our MutlibandGeoTiff.

Beginner Tip

A good way to ensure that your codes works properly is to give the
return data type for each of your vals and defs. If by
chance your return type and is different from what is actually returned,
the compiler will throw an error. In addition, this will also make your
code easier to read and understand for both you and others as well.
Example:

val multiPath = "path/to/a/multiband/geotiff.tif"

// This will give you the wrong result!
val geoTiff = GeoTiffReader.readSingleband(multiPath)

// This will cause your compiler to throw an error
val geoTiff: MultibandGeoTiff = GeoTiffReader.readSingleband(multiPath)

Before we move on to the next section, I’d like to take moment and talk
about an alternative way in which you can read in GeoTiffs. Both
SinglebandGeoTiffs and MultibandGeoTiffs have their own
apply methods, this means that you can give your parameter(s)
directly to their companion objects and you’ll get back a new instance
of the class.

For SinglebandGeoTiffs:

import geotrellis.raster.io.geotiff.SinglebandGeoTiff

val path: String = "path/to/raster-test/data/geotiff-test-files/lzw_int32.tif"
val geoTiff: SinglebandGeoTiff = SinglebandGeoTiff(path)

There are two differences found within this code from the previous
example. The first is this:

import geotrellis.raster.io.geotiff.SinglebandGeoTiff

As stated earlier, SinglebandGeoTiff and MultibandGeoTiff are
found within a different folder of geotrellis.raster.io.geotiff.
This is important to keep in mind when importing, as it can cause your
code not to compile if you refer to the wrong sub-folder.

The second line that was changed is:

val geoTiff: SinglebandGeoTiff = SinglebandGeoTiff(path)

Here, we see SinglebandGeoTiff‘s apply method being used on
path. Which returns the same thing as
GeoTiffReader.readSingleband(path), but with less verbosity.

MultibandGeoTiffs are the exact same as their singleband
counterparts.

import geotrellis.raster.io.geotiff.MultibandGeoTiff

val path: String = "raster-test/data/geotiff-test-files/3bands/3bands-striped-band.tif"
val geoTiff: MultibandGeoTiff = MultibandGeoTiff(path)

Our overview of basic GeoTiff reading is now done! But keep reading! For
you have greater say over how your GeoTiff will be read than what has
been shown. - - -

Expanding Our Vocab

We can read GeoTiffs, now what? Well, there’s actually more that we can
do when reading in a file. Sometimes you have a compressed GeoTiff, or
other times you might want to read in only a sub-section of GeoTiff and
not the whole thing. In either case, GeoTrellis can handle these issues
with ease.

Dealing With Compressed GeoTiffs

Compression is a method in which data is stored with fewer bits and can
then be uncompressed so that all data becomes available. This applies to
GeoTiffs as well. When reading in a GeoTiff, you can state whether or
not you want a compressed file to be uncompressed or not.

import geotrellis.raster.io.geotiff.reader.GeoTiffReader
import geotrellis.raster.io.geotiff._

// reading in a compressed GeoTiff and keeping it compressed
val compressedGeoTiff: SinglebandGeoTiff = GeoTiffReader.readSingleband("path/to/compressed/geotiff.tif", false, false)

// reading in a compressed GeoTiff and uncompressing it
val compressedGeoTiff: SinglebandGeoTiff = GeoTiffReader.readSingleband("path/to/compressed/geotiff.tif", true, false)

As you can see from the above code sample, the first Boolean value
is what determines whether or not the file should be decompressed or
not. What does the other Boolean value for? We’ll get to that soon!
For right now, though, we’ll just focus on the first one.

Why would you want to leave a file compressed or have uncompressed when
reading it? One of the benefits of using compressed GeoTiffs is that
might lead to better performance depending on your system and the size
of the file. Another instance where the compression is needed is if your
file is over 4GB is size. This is because when a GeoTiff is uncompressed
in GeoTrellis, it is stored in an Array. Anything over 4GB is larger
than the max array size for Java, so trying read in anything bigger will
cause your process to crash.

By default, decompression occurs on all read GeoTiffs. Thus, these two
lines of code are the same.

// these will both return the same thing!
GeoTiffReader.readSingleband("path/to/compressed/geotiff.tif")
GeoTiffReader.readSingleband("path/to/compressed/geotiff.tif", true, false)

In addition, both SinglebandGeoTiff and MultibandGeoTiff have a
method, compressed, that uncompresses a GeoTiff when it is read in.

SinglebandGeoTiff.compressed("path/to/compressed/geotiff.tif")
MultibandGeoTiff.compressed("path/to/compressed/geotiff.tif")

Streaming GeoTiffs

Remember that mysterious second parameter from earlier? It determines if
a GeoTiff should be read in via streaming or not. What is streaming?
Streaming is process of not reading in all of the data of a file at
once, but rather getting the data as you need it. It’s like a “lazy
read”. Why would you want this? The benefit of streaming is that it
allows you to work with huge or just parts of files. In turn, this makes
it possible to read in sub-sections of GeoTiffs and/or not having to
worry about memory usage when working with large files.

Tips For Using This Feature

It is important to go over the strengths and weaknesses of this feature
before use. If implemented well, the WindowedGeoTiff Reader can save you
a large amount of time. However, it can also lead to further problems if
it is not used how it was intended.

It should first be stated that this reader was made to read in sections
of a Geotiff. Therefore, reading in either the entire, or close to the whole
file will either be comparable or slower than reading in the entire file at
once and then cropping it. In addition, crashes may occur depending on the
size of the file.

Reading in Small Files

Smaller files are GeoTiffs that are less than or equal to 4GB in isze.
The way to best utilize the reader for these kinds of files differs from
larger ones.

To gain optimum performance, the principle to follow is: the smaller
the area selected, the faster the reading will be. What the exact
performance increase will be depends on the bandtype of the file. The
general pattern is that the larger the datatype is, quicker it will be
at reading. Thus, a Float64 GeoTiff will be loaded at a faster rate than
a UByte GeoTiff. There is one caveat to this rule, though. Bit bandtype
is the smallest of all the bandtypes, yet it can be read in at speed
that is similar to Float32.

For these files, 90% of the file is the cut off for all band and storage
types. Anything more may cause performance declines.

Reading in Large Files

Whereas small files could be read in full using the reader, larger files
cannot as they will crash whatever process you’re running. The rules for
these sorts of files are a bit more complicated than that of their
smaller counterparts, but learning them will allow for much greater
performance in your analysis.

One similarity that both large and small files share is that they have
the same principle: the smaller the area selected, the faster the
reading will be. However, while smaller files may experience slowdown
if the selected area is too large, these bigger files will crash.
Therefore, this principle must be applied more strictly than with the
previous file sizes.

In large files, the pattern of performance increase is the reverse of
the smaller files. Byte bandtype can not only read faster, but are able
to read in larger areas than bigger bandtypes. Indeed, the area which
you can select is limited to what the bandtype of the GeoTiff is. Hence,
an additional principle applies for these large files: the smaller the
bandtype, the larger of an area you can select. The exact size for
each bandtype is not known, estimates have been given in the table
bellow that should provide some indication as to what size to select.

	BandType
	Area Threshold Range In Cells

	Byte
	[5.76 * 109, 6.76 * 109)

	Int16
	[3.24 * 109, 2.56 * 109)

	Int32
	[1.44 * 109, 1.96 * 109)

	UInt16
	[1.96 * 109, 2.56 * 109)

	UInt32
	[1.44 * 109, 1.96 * 109)

	Float32
	[1.44 * 109, 1.96 * 109)

	Float64
	[3.6 * 108, 6.4 * 108)

How to Use This Feature

Using this feature is straight forward and easy. There are two ways to
implement the WindowedReader: Supplying the desired extent with the path
to the file, and cropping an already existing file that is read in
through a stream.

Using Apply Methods

Supplying an extent with the file’s path and having it being read in
windowed can be done in the following ways:

val path: String = "path/to/my/geotiff.tif"
val e: Extent = Extent(0, 1, 2, 3)

// supplying the extent as an Extent

// if the file is singleband
SinglebandGeoTiff(path, e)
// or
GeoTiffReader.readSingleband(path, e)

// if the file is multiband
MultibandGeoTiff(path, e)
// or
GeoTiffReader.readMultiband(path, e)

// supplying the extent as an Option[Extent]

// if the file is singleband
SinglebandGeoTiff(path, Some(e))
// or
GeoTiffReader.readSingleband(path, Some(e))

// if the file is multiband
MultibandGeoTiff(path, Some(e))
// or
GeoTiffReader.readMultiband(path, Some(e))

Using Object Methods

Cropping an already loaded GeoTiff that was read in through Streaming.
By using this method, the actual file isn’t loaded into memory, but its
data can still be accessed. Here’s how to do the cropping:

val path: String = "path/to/my/geotiff.tif"
val e: Extent = Extent(0, 1, 2, 3)

// doing the reading and cropping in one line

// if the file is singleband
SinglebandGeoTiff.streaming(path).crop(e)
// or
GeoTiffReader.readSingleband(path, false, true).crop(e)

// if the file is multiband
MultibandGeoTiff.streaming(path).crop(e)
// or
GeoTiffReader.readMultiband(path, false, true).crop(e)

// doing the reading and cropping in two lines

// if the file is singleband
val sgt: SinglebandGeoTiff =
 SinglebandGeoTiff.streaming(path)
 // or
 GeoTiffReader.readSingleband(path, false, true)
sgt.crop(e)

// if the file is multiband
val mgt: MultibandGeoTiff =
 MultibandGeoTiff.streaming(path)
 // or
 GeoTiffReader.readMultiband(path, false, true)
mgt.crop(e)

Conclusion

That takes care of reading local GeoTiff files! It should be said,
though, that what we went over here does not just apply to reading local
files. In fact, reading in GeoTiffs from other sources have similar
parameters that you can use to achieve the same goal.

Extract-Transform-Load (ETL)

This brief tutorial describes how to use GeoTrellis’
Extract-Transform-Load [https://en.wikipedia.org/wiki/Extract,_transform,_load]
(“ETL”) functionality to create a GeoTrellis catalog. We will accomplish
this in four steps:

	we will build the ETL assembly from code in the GeoTrellis source
tree,

	we will compose JSON configuration files describing the input and
output data,

	we will perform the ingest, creating a GeoTrellis catalog, and

	we will exercise the ingested data using a simple project.

It is assumed throughout this tutorial that Spark 2.0.0 or
greater [http://spark.apache.org/downloads.html] is installed, that
the GDAL command line tools [http://www.gdal.org/] are installed,
and that the GeoTrellis source tree has been locally cloned.

Local ETL

Build the ETL Assembly

Navigate into the GeoTrellis source tree, build the assembly, and copy
it to the /tmp directory:

cd geotrellis
./sbt "project spark-etl" assembly
cp spark-etl/target/scala-2.11/geotrellis-spark-etl-assembly-1.0.0.jar /tmp

Although in this tutorial we have chosen to build this assembly directly
from the GeoTrellis source tree, in some applications it may be
desirable to create a class in one’s own code base that uses or derives
from geotrellis.spark.etl.SinglebandIngest or
geotrellis.spark.etl.MultibandIngest, and use that custom class as
the entry-point. Please see the Chatta
Demo [https://github.com/geotrellis/geotrellis-chatta-demo/blob/94ae99269236610e66841893990860b7760e3663/geotrellis/src/main/scala/geotrellis/chatta/ChattaIngest.scala]
for an example of how to do that.

Compose JSON Configuration Files

The configuration files that we create in this section are intended for
use with a single multiband GeoTiff image. Three JSON files are
required: one describing the input data, one describing the output data,
and one describing the backend(s) in which the catalog should be stored.
Please see our more detailed ETL documentation for
more information about the configuration files.

We will now create three files in the /tmp/json directory:
input.json, output.json, and backend-profiles.json. (The
respective schemas that those files must obey can be found
here [https://github.com/geotrellis/geotrellis/blob/master/spark-etl/src/main/resources/input-schema.json],
here [https://github.com/geotrellis/geotrellis/blob/master/spark-etl/src/main/resources/output-schema.json],
and
here [https://github.com/geotrellis/geotrellis/blob/master/spark-etl/src/main/resources/backend-profiles-schema.json].)

Here is input.json:

[{
 "format": "multiband-geotiff",
 "name": "example",
 "cache": "NONE",
 "backend": {
 "type": "hadoop",
 "path": "file:///tmp/rasters"
 }
}]

The value multiband-geotiff is associated with the format key.
That is required if you want to access the data as an RDD of
SpatialKey-MultibandTile pairs. Making that value geotiff
instead of multiband-geotiff would result in SpatialKey-Tile
pairs. The value example associated with the key name gives the
name of the layer(s) that will be created. The cache key gives the
Spark caching strategy that will be used during the ETL process.
Finally, the value associated with the backend key specifies where
the data should be read from. In this case, the source data are stored
in the directory /tmp/rasters on local filesystem and accessed via
Hadoop.

Here is the output.json file:

{
 "backend": {
 "type": "hadoop",
 "path": "file:///tmp/catalog/"
 },
 "reprojectMethod": "buffered",
 "pyramid": true,
 "tileSize": 256,
 "keyIndexMethod": {
 "type": "zorder"
 },
 "resampleMethod": "cubic-spline",
 "layoutScheme": "zoomed",
 "crs": "EPSG:3857"
}

That file says that the catalog should be created on the local
filesystem in the directory /tmp/catalog using Hadoop. The source
data is pyramided so that layers of zoom level 0 through 12 are created
in the catalog. The tiles are 256-by-256 pixels in size and are indexed
in according to Z-order. Bicubic resampling (spline rather than
convolutional) is used in the reprojection process, and the CRS
associated with the layers is EPSG 3857 (a.k.a. Web Mercator).

Here is the backend-profiles.json file:

{
 "backend-profiles": []
}

In this case, we did not need to specify anything since we are using
Hadoop for both input and output. It happens that Hadoop only needs to
know the path to which it should read or write, and we provided that
information in the input.json and output.json files. Other
backends such as Cassandra and Accumulo require information to be
provided in the backend-profiles.json file.

Create the Catalog

Before performing the ingest, we will first retile the source raster.
This is not strictly required if the source image is small enough
(probably less than 2GB), but is still good practice even if it is not
required.

mkdir -p /tmp/rasters
gdal_retile.py source.tif -of GTiff -co compress=deflate -ps 256 256 -targetDir /tmp/rasters

The result of this command is a collection of smaller GeoTiff tiles in
the directory /tmp/rasters.

Now with all of the files that we need in place
(/tmp/geotrellis-spark-etl-assembly-1.0.0.jar, /tmp/json/input.json,
/tmp/json/output.json, /tmp/json/backend-profiles.json, and
/tmp/rasters/*.tif) we are ready to perform the ingest. That can be
done by typing:

rm -rf /tmp/catalog
$SPARK_HOME/bin/spark-submit \
 --class geotrellis.spark.etl.MultibandIngest \
 --master 'local[*]' \
 --driver-memory 16G \
 /tmp/geotrellis-spark-etl-assembly-1.0.0.jar \
 --input "file:///tmp/json/input.json" \
 --output "file:///tmp/json/output.json" \
 --backend-profiles "file:///tmp/json/backend-profiles.json"

After the spark-submit command completes, there should be a
directory called /tmp/catalog which contains the catalog.

Optional: Exercise the Catalog

Clone or download this example
code [https://github.com/geotrellis/geotrellis-examples/tree/be8707499bdf0d481396049d42d44492db7ec982]
(a zipped version of which can be downloaded from
here [https://github.com/geotrellis/geotrellis-examples/archive/be8707499bdf0d481396049d42d44492db7ec982.zip]).
The example code is a very simple project that shows how to read layers
from an HDFS catalog, perform various computations on them, then dump
them to disk so that they can be inspected.

Once obtained, the code can be built like this:

cd EtlTutorial
./sbt "project tutorial" assembly
cp tutorial/target/scala-2.11/tutorial-assembly-0.jar /tmp

The code can be run by typing:

mkdir -p /tmp/tif
$SPARK_HOME/bin/spark-submit \
 --class com.azavea.geotrellis.tutorial.EtlExercise \
 --master 'local[*]' \
 --driver-memory 16G \
 /tmp/tutorial-assembly-0.jar /tmp/catalog example 12

In the block above, /tmp/catalog is an HDFS URI pointing to the
location of the catalog, example is the layer name, and 12 is
the layer zoom level. After running the code, you should find a number
of images in /tmp/tif which are GeoTiff renderings of the tiles of
the raw layer, as well as the layer with various transformations applied
to it.

GeoDocker ETL

The foregoing discussion showed how to ingest data to the local
filesystem, albeit via Hadoop. In this section, we will give a basic
example of how to use the ETL machinery to ingest into HDFS on
GeoDocker. Throughout this section we will assume that the files that
were previously created in the local /tmp directory (namely
/tmp/geotrellis-spark-etl-assembly-1.0.0.jar, /tmp/json/input.json,
/tmp/json/output.json, /tmp/json/backend-profiles.json, and
/tmp/rasters/*.tif) still exist.

In addition to the dependencies needed to complete the steps given
above, this section assumes that user has a recent version of
docker-compose installed and working.

Edit output.json

Because we are planning to ingest into HDFS and not to the filesystem,
we must modify the output.json file that we used previously. Edit
/tmp/json/output.json so that it looks like this:

{
 "backend": {
 "type": "hadoop",
 "path": "hdfs://hdfs-name/catalog/"
 },
 "reprojectMethod": "buffered",
 "pyramid": true,
 "tileSize": 256,
 "keyIndexMethod": {
 "type": "zorder"
 },
 "resampleMethod": "cubic-spline",
 "layoutScheme": "zoomed",
 "crs": "EPSG:3857"
}

The only change is the value associated with the path key; it now
points into HDFS instead of at the local filesystem.

Download docker-compose.yml File

We must now obtain a docker-compose.yml file. Download this
file [https://raw.githubusercontent.com/geodocker/geodocker-hdfs/2542b92075fbc750a1b1fb1b9dc47190fc7beb35/docker-compose.yml]
and move it to the /tmp directory. The directory location is
important, because docker-compose will use that to name the network
and containers that it creates.

Bring Up GeoDocker

With the docker-compose.yml file in place, we are now ready to start
our GeoDocker instance:

cd /tmp
docker-compose up

After a period of time, the various Hadoop containers should be up and
working.

Perform the Ingest

In a different terminal, we will now start another container:

docker run -it --rm --net=tmp_default -v $SPARK_HOME:/spark:ro -v /tmp:/tmp openjdk:8-jdk bash

Notice that the network name was derived from the name of the directory
in which the docker-compose up command was run. The
--net=tmp_default switch connects the just-started container to the
bridge network that the GeoDocker cluster is running on. The
-v $SPARK_HOME:/spark:ro switch mounts our local Spark installation
at /spark within the container so that we can use it. The
-v /tmp:/tmp switch mounts our host /tmp directory into the
container so that we can use the data and jar files that are there.

Within the just-started container, we can now perform the ingest:

/spark/bin/spark-submit \
 --class geotrellis.spark.etl.MultibandIngest \
 --master 'local[*]' \
 --driver-memory 16G \
 /tmp/geotrellis-spark-etl-assembly-1.0.0.jar \
 --input "file:///tmp/json/input.json" \
 --output "file:///tmp/json/output.json" \
 --backend-profiles "file:///tmp/json/backend-profiles.json"

The only change versus what we did earlier is the location of the
spark-submit binary.

Optional: Exercise the Catalog

Now, we can exercise the catalog:

rm -f /tmp/tif/*.tif
/spark/bin/spark-submit \
 --class com.azavea.geotrellis.tutorial.EtlExercise \
 --master 'local[*]' \
 --driver-memory 16G \
 /tmp/tutorial-assembly-0.jar /tmp/catalog example 12

The only differences form what we did earlier are the location of the
spark-submit binary and URI specifying the location of the catalog.

Core Concepts

Geographical Information Systems (GIS), like any specialized field, has
a wealth of jargon and unique concepts. When represented in software,
these concepts can sometimes be skewed or expanded from their original
forms. We give a thorough definition of many of the core concepts here,
while referencing the Geotrellis objects and source files backing them.

This document aims to be informative to new and experienced GIS users
alike. If GIS is brand, brand new to you, this
document [https://www.gislounge.com/what-is-gis/] is a useful high
level overview.

Basic Terms

	Tile: A grid of numeric cells that represent some data on the
Earth.

	Cell: A single unit of data in some grid, also called a
Location in GIS.

	Layer: or “Tile Layer”, this is a grid (or cube) of Tiles.

	Zoom Layer: a Tile Layer at some zoom level.

	Key: Used to index a Tile in a grid (or cube) of them.

	Key Index: Used to transform higher-dimensional Keys into one
dimension.

	Metadata: or “Layer Metadata”, stores information critical to
Tile Layer IO.

	Layout Definition: A description of a Tile grid (its dimensions,
etc).

	Extent: or “Bounding Box”, represents some area on the Earth.

	Raster: A Tile with an Extent.

	Vector: or “Geometry”, these are Point, Line, and Polygon data.

	Feature: A Geometry with some associated metadata.

	RDD: “Resilient Distributed Datasets” from Apache
Spark [http://spark.apache.org/]. Can be thought of as a highly
distributed Scala Seq.

These definitions are expanded upon in other sections of this document.

 Using Rasters

Using Rasters

This document serves as a complete guide to using Rasters in
GeoTrellis.

Raster Rendering

Rendering Common Image Formats

At some point, you’ll want to output a visual representation of the
tiles you’re processing. Likely, that’s why you’re reading this bit of
documentation. Luckily enough, geotrellis provides some methods which
make the process as painless as possible. Currently, both PNG and JPG
formats are supported.

To begin writing your tiles out as PNGs and JPGs, there are just a few
things to keep in mind. As elsewhere throughout geotrellis, the
functionality in this module is added through implicit class extension.
import geotrellis.raster._ will import the necessary methods off of
the core types like renderToPng, and the the types like
ColorRamp and ColorMap live in geotrellis.raster.render.

First Steps

Let’s say that the tile you’ve got is an integer tile and that the
integers in it are all actually hex codes for RGBA colors. In this
case, your task is nearly complete. The following code should be
sufficient:

import geotrellis.raster._

// Generate the tile - let's paint it red with #FF0000FF
// (red = 0xFF or 255; green = 0x00 or 0; blue = 0x00 or 0; and alpha = 0xFF or 255, which is completely opaque)
val hexColored: IntArrayTile = IntArrayTile.fill(0xFF0000FF, 100, 100)

// Making a PNG
val png: Png = hexColored.renderPng

// JPG variation
val jpg: Jpg = hexColorsHere.renderJpg

A Png and Jpg type represent the Array[Byte] that is the
binary encoding of the image. You can get to the bytes by calling the
bytes property, e.g. png.bytes or jpg.bytes. It’s useful to
use the bytes directly if you are, say, returning PNG data from a web
service. These image format types also have a write method that can
be called to write that array of bytes to the file system, therefore
writing out a PNG or JPG representation of our Tile to the
filesystem.

Clearly this won’t suffice for the majority of use-cases. In general,
you’re more likely to be working on tiles whose cells encode information
having only an incidental relation to human vision. In these cases,
you’ll need to tell renderPng and renderJpg how the values in
your tile relate to the colors you’d like in your image. To this end,
there are arguments you can provide to the render method which will tell
geotrellis how to color cells for your tile.

ColorRamp

A ColorRamp describes a range of colors that can be used to paint values
of a tile. You can use a built-in color ramp, or construct one with your
own palette with the API described below.

Built-in color ramps

GeoTrellis provides built-in color ramps in the ColorRamps object.
These are provided to ease the transition from developer to
cartographer. However, you need not feel constrained by these and can
use your own color palettes as well. There are many good resources
online for selecting color ramps.

Color Schemes

[image: Blue to Orange] [image: Blue to Red] [image: Green to Red-Orange] [image: Green to Orange]

From left to right

Blue to Orange

An 11-step diverging color ramp from blue to gray to orange. The gray
critical class in the middle clearly shows a median or zero value.
Example uses include temperature, climate, elevation, or other color
ranges where it is necessary to distinguish categories with multiple
hues.

Blue to Red

A 10-step diverging color ramp from blue to red. Example uses include
elections and politics, voter swing, climate or temperature, or other
color ranges where it is necessary to distinguish categories with
multiple hues.

Green to Red-Orange

A 10-step diverging color ramp from green to red-orange. Example uses
include elections and politics, voter swing, climate or temperature, or
other color ranges where it is necessary to distinguish categories with
multiple hues.

Green to Orange

A 13-step diverging color ramp from green to orange. Example uses
include elevation, relief maps, topography, or other color ranges where
it is necessary to distinguish categories with multiple hues.

Sequential Color Schemes

[image: Light to Dark - Sunset] [image: Light to Dark - Green] [image: Yellow to Red - Heatmap] [image: Blue to Yellow to Red Spectrum - Heatmap] [image: Dark Red to Yellow-White - Heatmap] [image: Light Purple to Dark Purple to White]

From left to right

Light to Dark - Sunset

An 11-step sequential color ramp showing intensity from light to dark.
This color ramp is perfect for showing density where it is critical to
highlight very different values with bold colors at the higher, darker
end of the ramp. Example uses include population density, accessibility,
or ranking.

Light to Dark - Green

A basic 8-step sequential color ramp showing light to dark in shades of
green. Example uses include density, ordered data, ranking, or any map
where darker colors represent higher data values and lighter colors
represent lower data values, generally.

Yellow to Red - Heatmap

An 8-step sequential heatmap from yellow to dark red. Great for heatmaps
on a light basemap where the hottest values are more opaque or dark.
Also useful for sequential color ranges where the lowest value is the
median or zero value.

Blue to Yellow to Red Spectrum - Heatmap

An 11-step heatmap from blue to yellow to red. Great for showing a wide
range of values with clear differences in hue.

Dark Red to Yellow-White - Heatmap

A 10-step sequential heatmap from dark red to yellow to white. Great for
heatmaps where the hottest values should look more vibrant or intense.

Light Purple to Dark Purple to White

An 8-step sequential heatmap to show intensity with shades of purple
with white as the “hottest” value. Great for light or gray basemaps, or
where the highest value needs to be called out visually.

Qualitative or Categorical Schemes

[image: Bold Lands Use] [image: Muted Terrain]

From left to right

Bold Land Use

An 8-hue qualitative scheme used to show a clear difference in
categories that are unordered or very different. Example uses include
zoning, land use, land cover, or maps where all categories or groups are
equal in visual strength/magnitude.

Muted Terrain

An 8-hue qualitative scheme used to show different kinds of map topology
or features. This is generally used to show landforms, terrain, and
topology.

Viridis, Magma, Plasma and Inferno

The Viridis, Magma, Plasma and Inferno color ramps were developed for matplotlib,
and are incorporated into our default color ramp set. You can read more about
these color ramps here <https://bids.github.io/colormap/>.

Custom Color Ramps

You can create your own color ramp with a list of integar values,
constructed using our RBG or RGBA helper objects.

val colorRamp =
 ColorRamp(
 RGB(0,255,0),
 RGB(63, 255 ,51),
 RGB(102,255,102),
 RGB(178, 255,102),
 RGB(255,255,0),
 RGB(255,255,51),
 RGB(255,153, 51),
 RGB(255,128,0),
 RGB(255,51,51),
 RGB(255,0,0)
)

You can also do things like set the number of stops in a gradient
between colors, and set an alpha gradient. This example sets a 100 color
stops that interpolates colors between red and blue, with an alpha value
that starts at totally opaque for the red values, and ends at 0xAA alpha
for blue values:

val colorRamp =
 ColorRamp(0xFF0000FF, 0x0000FFFF)
 .stops(100)
 .setAlphaGradient(0xFF, 0xAA)

There are many online and offline resources for generating color
palettes for cartography including:

	Carto Colors [https://carto.com/carto-colors]

	ColorBrewer 2.0 [http://colorbrewer2.org/js/]

	Cartographer’s Toolkit: Colors, Typography,
Patterns [http://www.amazon.com/Cartographers-Toolkit-Colors-Typography-Patterns/dp/0615467946],
by Gretchen N. Peterson

	Designing Better
Maps [http://www.amazon.com/Designing-Better-Maps-Guide-Users/dp/1589480899/],
by Cynthia A. Brewer

	Designed Maps: A
Sourcebook [http://www.amazon.com/Designed-Maps-Sourcebook-GIS-Users/dp/1589481607/],
by Cynthia A. Brewer

RGBA vs RGB values

One way to represent a color is as an RGB hex value, as often seen in
CSS or graphics programs. For example, the color red is represented by
#FF0000 (or, in scala, 0xFF0000).

Internally to GeoTrellis, colors are represented as RGBA values, which
includes a value for transparency. These can be represented with 8
instead of 6 hex characters (with the alpha opacity value being the last
two charcters) such as 0xFF0000FF for opaque red. When using the
programming interface, just be sure to keep the distinction in mind.

You can create RGB and RGBA colors in a variety of ways:

import geotrellis.raster.render._

val color1: Int = RGB(r = 255, g = 170, b = 85)
val color2: Int = RGBA(0xFF, 0xAA, 0x55, 0xFF)
val color3: Int = 0xFFAA55FF
assert(color1 == color2 && color2 == color3)

ColorMap

A ColorMap is what actually determines how the values of a tile to
colors. It constitutes a mapping between class break values and color
stops, as well as some options that determine how to color raster
values.

ColorMap Options

The options available for a ColorMap are a class boundary type, which
determines how those class break values (one of GreaterThan,
GreaterThanOrEqualTo, LessThan, LessThanOrEqualTo, or
Exact), an option that defines what color NoData values should be
colored, as well as an option for a “fallback” color, which determines
the color of any value that doesn’t fit to the color map. Also, if the
strict option is true, then no fallback color is used, and the code
will throw an exception if a value does not fit the color map. The
default values of these options are:

val colorMapDefaultOptions =
 ColorMap.Options(
 classBoundaryType = LessThan,
 noDataColor = 0x00000000, // transparent
 fallbackColor = 0x00000000, // transparent
 strict = false
)

To examplify the options, let’s look at how two different color ramps
will color values.

import geotrellis.render._

// Constructs a ColorMap with default options,
// and a set of mapped values to color stops.
val colorMap1 =
 ColorMap(
 Map(
 3.5 -> RGB(0,255,0),
 7.5 -> RGB(63,255,51),
 11.5 -> RGB(102,255,102),
 15.5 -> RGB(178,255,102),
 19.5 -> RGB(255,255,0),
 23.5 -> RGB(255,255,51),
 26.5 -> RGB(255,153,51),
 31.5 -> RGB(255,128,0),
 35.0 -> RGB(255,51,51),
 40.0 -> RGB(255,0,0)
)
)

// The same color map, but this time considering the class boundary type
// as GreaterThanOrEqualTo, and with a fallback and nodata color.
val colorMap2 =
 ColorMap(
 Map(
 3.5 -> RGB(0,255,0),
 7.5 -> RGB(63,255,51),
 11.5 -> RGB(102,255,102),
 15.5 -> RGB(178,255,102),
 19.5 -> RGB(255,255,0),
 23.5 -> RGB(255,255,51),
 26.5 -> RGB(255,153,51),
 31.5 -> RGB(255,128,0),
 35.0 -> RGB(255,51,51),
 40.0 -> RGB(255,0,0)
),
 ColorMap.Options(
 classBoundaryType = GreaterThanOrEqualTo,
 noDataColor = 0xFFFFFFFF,
 fallbackColor = 0xFFFFFFFF
)
)

If we were to use the mapDouble method of the color maps to find
color values of the following points, we’d see the following:

scala> colorMap1.mapDouble(2.0) == RGB(0, 255, 0)
res1: Boolean = true

scala> colorMap2.mapDouble(2.0) == 0xFFFFFFFF
res2: Boolean = true

Because colorMap1 has the LessThan class boundary type, 2.0
will map to the color value of 3.5. However, because colorMap2
is based on the GreaterThanOrEqualTo class boundary type, and
2.0 is not greater than or equal to any of the mapped values, it
maps 2.0 to the fallbackColor.

scala> colorMap1.mapDouble(23.5) == RGB(255,153,51)
res4: Boolean = true

scala> colorMap2.mapDouble(23.5) == RGB(255,255,51)
res5: Boolean = true

If we map a value that is on a class border, we can see that the
LessThan color map maps the to the lowest class break value that our
value is still less than (26.5), and for the
GreaterThanOrEqualTo color map, since our value is equal to a class
break value, we return the color associated with that value.

Creating a ColorMap based on Histograms

One useful way to create ColorMaps is based on a Histogram of a
tile. Using a histogram, we can compute the quantile breaks that match
up to the color stops of a ColorRamp, and therefore paint a tile
based on quantiles instead of something like equal intervals. You can
use the fromQuantileBreaks method to create a ColorMap from both
a Histogram[Int] and Histogram[Double]

Here is an example of creating a ColorMap from a ColorRamp and a
Histogram[Int], in which we define a ramp from red to blue, set the
number of stops to 10, and convert it to a color map based on quantile
breaks:

val tile: Tile = ???

val colorMap = ColorMap.fromQuantileBreaks(tile.histogram, ColorRamp(0xFF0000FF, 0x0000FFFF).stops(10))

Here is another way to do the same thing, using the
ColorRamp.toColorMap:

val tile: Tile = ???

val colorMap: ColorMap =
 ColorRamp(0xFF0000FF, 0x0000FFFF)
 .stops(10)
 .toColorMap(tile.histogram)

PNG and JPG Settings

It might be useful to tweak the rendering of images for some use cases.
In light of this fact, both png and jpg expose a Settings classes
(geotrellis.raster.render.jpg.Settings and
geotrellis.raster.render.png.Settings) which provide a means to tune
image encoding.

In general, messing with this just isn’t necessary. If you’re unsure,
there’s a good chance this featureset isn’t for you.

PNG Settings

png.Settings allows you to specify a ColorType (bit depth and
masks) and a Filter. These can both be read about on the W3
specification and png Wikipedia
page.

JPEG Settings

jpg.Settings allow specification of the compressionQuality (a Double
from 0 to 1.0) and whether or not Huffman tables are to be computed on
each run - often referred to as ‘optimized’ rendering. By default, a
compressionQuality of 0.7 is used and Huffman table optimization is not
used.

Resampling

Often, when working with raster data, it is useful to change the
resolution, crop the data, transform the data to a different projection,
or to do all of that at once. This all relies on our ability to
resample, which is the act of changing the spatial resolution and layout
of the raster cells, and interpolating the values of the modified cells
from the original cells. For everything there is a price, however, and
changing the resolution of a tile is no exception: there will (almost)
always be a loss of information (or representativeness) when conducting
an operation which changes the number of cells on a tile.

Upsampling vs Downsampling

Intuitively, there are two ways that you might resample a tile. You
might:

	increase the number of cells

	decrease the number of cells

Increasing the number of cells produces more information at the cost of
being only probabilistically representative of the underlying data whose
points are being used to generate new values. We can call this
upsampling (because we’re increasing the samples for a given
representation of this or that state of affairs). Typically, upsampling
is handled through interpolation of new values based on the old ones.

The opposite, downsampling, involves a loss of information. Fewer points
of data are tasked with representing the same states of affair as the
tile on which the downsampling is carried out. Downsampling is a common
strategy in digital compression.

Aggregate vs Point-Based Resampling

In geotrellis, ResampleMethod is an ADT (through a sealed trait in
Resample.scala) which branches into PointResampleMethod and
AggregateResampleMethod. The aggregate methods of resampling are all
suited for downsampling only. For every extra cell created by upsampling
with an AggregateResampleMethod, the resulting tile is absolutely
certain to contain a NODATA cell. This is because for each
additional cell produced in an aggregated resampling of a tile, a
bounding box is generated which determines the output cell’s value on
the basis of an aggregate of the data captured within said bounding box.
The more cells produced through resampling, the smaller an aggregate
bounding box. The more cells produced through resampling, the less
likely it is that this box will capture any values to aggregate over.

What we call ‘point’ resampling doesn’t necessarily require a box within
which data is aggregated. Rather, a point is specified for which a value
is calculated on the basis of nearby value(s). Those nearby values may
or may not be weighted by their distance from the point in question.
These methods are suitable for both upsampling and downsampling.

Remember What Your Data Represents

Along with the formal characteristics of these methods, it is important
to keep in mind the specific character of the data that you’re working
with. After all, it doesn’t make sense to use a method like Bilinear
resampling if you’re dealing primarily with categorical data. In this
instance, your best bet is to choose an aggregate method (and keep in
mind that the values generated don’t necessarily mean the same thing as
the data being operated on) or a forgiving (though unsophisticated)
method like NearestNeighbor.

Histograms

It’s often useful to derive a histogram from rasters, which represents a
distribution of the values of the raster in a more compact form. In
GeoTrellis, we differentiate between a Histogram[Int], which represents
the exact counts of integer values, and a Histogram[Double], which
represents a grouping of values into a discrete number of buckets. These
types are in the geotrellis.raster.histogram package.

The default implementation of Histogram[Int] is the
FastMapHistogram, developed by Erik Osheim, which utilizes a growable
array structure for keeping track of the values and counts.

The default implementation of Histogram[Double] is the
StreamingHistogram, developed by James McClain and based on the paper
Ben-Haim, Yael, and Elad Tom-Tov. "A streaming parallel decision tree
algorithm." The Journal of Machine Learning Research 11 (2010): 849-872..

Histograms can give statistics such as min, max, median, mode and median. It
also can derive quantile breaks, as dsecribed in the next section.

Quantile Breaks

Dividing a histogram distribution into quantile breaks attempts to
classify values into some number of buckets, where the number of values
classified into each bucket are generally equal. This can be useful in
representing the distribution of the values of a raster.

For instance, say we had a tile with mostly values between 1 and 100,
but there were a few values that were 255. We want to color the raster
with 3 values: low values with red, middle values with green, and high
values with blue. In other words, we want to classify each of the raster
values into one of three categories: red, green and blue. One technique,
called equal interval classification, consists of splitting up the range
of values (1 - 255) into the number of equal intervals as target
classifications (3). This would give us a range intervals of 1 - 85 for
red, 86 - 170 for green, and 171 - 255 for blue. This corresponds to
“breaks” values of 85, 170, and 255. Because the values are mostly
between 1 and 100, most of our raster would be colored red. This may not
show the contrast of the dataset that we would like.

Another technique for doing this is called quantile break
classification; this makes use of the quantile breaks we can derive from
our histogram. The quantile breaks will concentrate on making the number
of values per “bin” equal, instead of the range of the interval. With
this method, we might end up seeing breaks more like 15, 75, 255,
depending on the distribution of the values.

For a code example, this is how we would do exactly what we talked
about: color a raster tile into red, green and blue values based on it’s
quantile breaks:

import geotrellis.raster.histogram._
import geotrellis.raster.render._

val tile: Tile = ??? // Some raster tile
val histogram: Histogram[Int] = tile.histogram

val colorRamp: ColorRamp =
 ColorRamp(
 RGB(r=0xFF, b=0x00, g=0x00),
 RGB(r=0x00, b=0xFF, g=0x00),
 RGB(r=0x00, b=0x00, g=0xFF)
)

val colorMap = ColorMap.fromQuantileBreaks(histogram, colorRamp)

val coloredTile: Tile = tile.color(colorMap)

 Using Vectors

Using Vectors

Parsing GeoJson

GeoTrellis includes good support for serializing and deserializing
geometry to/from GeoJson within the geotrellis.vector.io.json
package. Utilizing these features requires some instruction, however,
since the interface may not be immediately apparent from the type
signatures.

Serializing to GeoJson

All Geometry and Feature objects in geotrellis.vector have a
method extension providing a toGeoJson method. This means that:

import geotrellis.vector.io._

Polygon((10.0, 10.0), (10.0, 20.0), (30.0, 30.0), (10.0, 10.0)).toGeoJson

is valid, in this case yielding:

{"type":"Polygon","coordinates":[[[10.0,10.0],[10.0,20.0],[30.0,30.0],[10.0,10.0]]]}

Issuing .toGeoJson on Feature instances, requires that the type
parameter supplied to the feature meets certain requirements. For
example, PointFeature(Point(0,0), 3) will succeed, but to tag a
Feature with arbitrary data, that data must be encapsulated in a case
class. That class must also be registered with the Json reading
infrastructure provided by spray. The following example achieves
these goals:

import geotrellis.vector.io.json._

case class UserData(data: Int)
implicit val boxedValue = jsonFormat1(UserData)

PointFeature(Point(0,0), UserData(13))

Case classes with more than one argument would require the variants of
jsonFormat1 for classes of higher arity. The output of the above
snippet is:

{"type":"Feature","geometry":{"type":"Point","coordinates":[0.0,0.0]},"properties":{"data":13}}

where the property has a single field named data. Upon
deserialization, it will be necessary for the data member of the feature
to have fields with names that are compatible with the members of the
feature’s data type.

This is all necessary underpinning, but note that it is generally
desirable to (de)serialize collections of features. The serialization
can be achieved by calling .toGeoJson on a Seq[Feature[G, T]].
The result is a Json representation of a FeatureCollection.

Deserializing from GeoJson

The return trip from a string representation can be accomplished by
another method extension provided for strings: parseGeoJson[T]. The
only requirement for using this method is that the type of T must
match the contents of the Json string. If the Json string represents
some Geometry subclass (i.e., Point, MultiPolygon, etc),
then that type should be supplied to parseGeoJson. This will work to
make the return trip from any of the Json strings produced above.

Again, it is generally more interesting to consider Json strings that
contain FeatureCollection structures. These require more complex
code. Consider the following Json string:

val fc: String = """{
 | "type": "FeatureCollection",
 | "features": [
 | {
 | "type": "Feature",
 | "geometry": { "type": "Point", "coordinates": [1.0, 2.0] },
 | "properties": { "someProp": 14 },
 | "id": "target_12a53e"
 | }, {
 | "type": "Feature",
 | "geometry": { "type": "Point", "coordinates": [2.0, 7.0] },
 | "properties": { "someProp": 5 },
 | "id": "target_32a63e"
 | }
 |]
 |}""".stripMargin

Decoding this structure will require the use of either
JsonFeatureCollection or JsonFeatureCollectionMap; the former
will return queries as a Seq[Feature[G, T]], while the latter will
return a Map[String, Feature[G, T]] where the key is the id
field of each feature. After calling:

val collection = fc.parseGeoJson[JsonFeatureCollectionMap]

it will be necessary to extract the desired features from
collection. In order to maintain type safety, these results are
pulled using accessors such as .getAllPoints,
.getAllMultiLineFeatures, and so on. Each geometry and feature type
requires the use of a different method call.

As in the case of serialization, to extract the feature data from this
example string, we must create a case class with an integer member named
someProp and register it using jsonFormat1.

case class SomeProp(someProp: Int)
implicit val boxedToRead = jsonFormat1(SomeProp)

collection.getAllPointFeatures[SomeProp]

A Note on Creating JsonFeatureCollectionMaps

It is straightforward to create FeatureCollection representations, as
illustrated above. Simply package your features into a Seq and call
toGeoJson. In order to name those features, however, it requires
that a JsonFeatureCollectionMap be explicitly created. For instance:

val fcMap = JsonFeatureCollectionMap(Seq("bob" -> Feature(Point(0,0), UserData(13))))

Unfortunately, the toGeoJson method is not extended to
JsonFeatureCollectionMap, so we are forced to call
fcMap.toJson.toString to get the same functionality. The return of
that call is:

{
 "type": "FeatureCollection",
 "features": [{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [0.0, 0.0]
 },
 "properties": {
 "data": 13
 },
 "id": "bob"
 }]
}

Kriging Interpolation [https://en.wikipedia.org/wiki/Kriging]

[image: Kriging]

Semivariograms

This method of interpolation is based on constructing Semivariograms.
For grasping the structure of spatial dependencies of the known
data-points, semivariograms are constructed.

First, the sample data-points’ spatial structure to be captured is
converted to an empirical semivariogram, which is then fit to
explicit/theoretical semivariogram models.

Two types of Semivariograms are developed :

	Linear Semivariogram

	Non-Linear Semivariograms

Empirical Semivariogram

//(The array of sample points)
val points: Array[PointFeature[Double]] = ???

/** The empirical semivariogram generation
 * "maxDistanceBandwidth" denotes the maximum inter-point distance relationship
 * that one wants to capture in the empirical semivariogram.
 */
val es: EmpiricalVariogram = EmpiricalVariogram.nonlinear(points, maxDistanceBandwidth, binMaxCount)

The sample-data point used for training the Kriging Models are clustered
into groups(aka bins) and the data-values associated with each of the
data-points are aggregated into the bin’s value. There are various ways
of constructing the bins, i.e. equal bin-size(same number of points in
each of the bins); or equal lag-size(the bins are separated from each
other by a certain fixed separation, and the samples with the
inter-points separation fall into the corresponding bins).

In case, there are outlier points in the sample data, the equal bin-size
approach assures that the points’ influence is tamed down; however in
the second approach, the outliers would have to be associated with
weights (which is computationally more intensive).

The final structure of the empirical variogram has an array of tuples :

(h, k)
where h => Inter-point distance separation
 k => The variogram's data-value (used for covariogram construction)

Once the empirical semivariograms have been evaluated, these are fitted
into the theoretical semivariogram models (the fitting is carried out
into those models which best resemble the empirical semivariogram’s
curve generate).

Linear Semivariogram

/** "radius" denotes the maximum inter-point distance to be
 * captured into the semivariogram
 * "lag" denotes the inter-bin distance
 */
val points: Array[PointFeature[Double]] = ...
val linearSV = LinearSemivariogram(points, radius, lag)

This is the simplest of all types of explicit semivariogram models and
does not very accurately capture the spatial structure, since the data
is rarely linearly changing. This consists of the points’ being modelled
using simple regression into a straight line. The linear semivariogram
has linear dependency on the free variable (inter-point distance) and is
represented by:

f(x) = slope * x + intercept

Non-Linear Semivariogram

/**
 * ModelType can be any of the models from
 * "Gaussian", "Circular", "Spherical", "Exponential" and "Wave"
 */
val points: Array[PointFeature[Double]] = ...
val nonLinearSV: Semivariogram =
 NonLinearSemivariogram(points, 30000, 0, [[ModelType]])

Most often the empirical variograms can not be adequately represented by
the use of linear variograms. The non-linear variograms are then used to
model the empirical semivariograms for use in Kriging intepolations.
These have non-linear dependencies on the free variable (inter-point
distance).

In case the empirical semivariogram has been previously constructed, it
can be fitted into the semivariogram models by :

val svSpherical: Semivariogram =
 Semivariogram.fit(empiricalSemivariogram, Spherical)

The popular types of Non-Linear Semivariograms are :

(h in each of the function definition denotes the inter-point distances)

Gaussian Semivariogram

// For explicit/theoretical Gaussian Semivariogram
val gaussianSV: Semivariogram =
 NonLinearSemivariogram(range, sill, nugget, Gaussian)

The formulation of the Gaussian model is :

 | 0 , h = 0
gamma(h; r, s, a) = |
 | a + (s - a) {1 - e^(-h^2 / r^2)} , h > 0

Circular Semivariogram

//For explicit/theoretical Circular Semivariogram
val circularSV: Semivariogram =
 NonLinearSemivariogram(range, sill, nugget, Circular)

 | 0 , h = 0
 |
 | | _________ |
 | | 2 | h | 2h / h^2 |
gamme(h; r, s, a) = | a + (s - a) * |1 - ----- * cos_inverse|---| + -------- * /1 - ----- | , 0 < h <= r
 | | pi | r | pi * r \/ r^2 |
 | | |
 |
 | s , h > r

Spherical Semivariogram

// For explicit/theoretical Spherical Semivariogram
val sphericalSV: Semivariogram = NonLinearSemivariogram(range, sill, nugget, Spherical)

 | 0 , h = 0
 | | 3h h^3 |
gamma(h; r, s, a) = | a + (s - a) |---- - ------- | , 0 < h <= r
 | | 2r 2r^3 |
 | s , h > r

Exponential Semivariogram

// For explicit/theoretical Exponential Semivariogram
val exponentialSV: Semivariogram = NonLinearSemivariogram(range, sill, nugget, Exponential)

 | 0 , h = 0
gamma(h; r, s, a) = |
 | a + (s - a) {1 - e^(-3 * h / r)} , h > 0

Wave Semivariogram

//For explicit/theoretical Exponential Semivariogram
//For wave, range (viz. r) = wave (viz. w)
val waveSV: Semivariogram =
 NonLinearSemivariogram(range, sill, nugget, Wave)

 | 0 , h = 0
 |
gamma(h; w, s, a) = | | sin(h / w) |
 | a + (s - a) |1 - w ------------ | , h > 0
 | | h |

Notes on Semivariogram fitting

The empirical semivariogram tuples generated are fitted into the
semivariogram models using Levenberg Marquardt
Optimization [https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm].
This internally uses jacobian (differential) functions corresponding to
each of the individual models for finding the optimum range, sill and
nugget values of the fitted semivariogram.

// For the Spherical model
val model: ModelType = Spherical
valueFunc(r: Double, s: Double, a: Double): (Double) => Double =
 NonLinearSemivariogram.explicitModel(r, s, a, model)

The Levenberg Optimizer uses this to reach to the global minima much
faster as compared to unguided optimization.

In case, the initial fitting of the empirical semivariogram generates a
negative nugget value, then the process is re-run after forcing the
nugget value to go to zero (since mathematically, a negative nugget
value is absurd).

Kriging Methods

Once the semivariograms have been constructed using the known point’s
values, the kriging methods can be invoked.

The methods are largely classified into different types in the way the
mean(mu) and the covariance values of the object are dealt with.

//Array of sample points with given data
val points: Array[PointFeature[Double]] = ...

//Array of points to be kriged
val location: Array[Point] = ...

There exist four major kinds of Kriging interpolation techniques, namely
:

Simple Kriging

//Simple kriging, tuples of (prediction, variance) per prediction point
val sv: Semivariogram = NonLinearSemivariogram(points, 30000, 0, Spherical)

val krigingVal: Array[(Double, Double)] =
 new SimpleKriging(points, 5000, sv)
 .predict(location)
/**
 * The user can also do Simple Kriging using :
 * new SimpleKriging(points).predict(location)
 * new SimpleKriging(points, bandwidth).predict(location)
 * new SimpleKriging(points, sv).predict(location)
 * new SimpleKriging(points, bandwidth, sv).predict(location)
 */

It belongs to the class of Simple Spatial Prediction Models.

The simple kriging is based on the assumption that the underlying
stochastic process is entirely known and the spatial trend is
constant, viz. the mean and covariance values of the entire
interpolation set is constant (using solely the sample points)

mu(s) = mu known; s belongs to R
cov[eps(s), eps(s')] known; s, s' belongs to R

Ordinary Kriging

//Ordinary kriging, tuples of (prediction, variance) per prediction point
val sv: Semivariogram = NonLinearSemivariogram(points, 30000, 0, Spherical)

val krigingVal: Array[(Double, Double)] =
 new OrdinaryKriging(points, 5000, sv)
 .predict(location)
/**
 * The user can also do Ordinary Kriging using :
 * new OrdinaryKriging(points).predict(location)
 * new OrdinaryKriging(points, bandwidth).predict(location)
 * new OrdinaryKriging(points, sv).predict(location)
 * new OrdinaryKriging(points, bandwidth, sv).predict(location)
 */

It belongs to the class of Simple Spatial Prediction Models.

This method differs from the Simple Kriging appraoch in that, the
constant mean is assumed to be unknown and is estimated within the
model.

mu(s) = mu unknown; s belongs to R
cov[eps(s), eps(s')] known; s, s' belongs to R

Universal Kriging

//Universal kriging, tuples of (prediction, variance) per prediction point

val attrFunc: (Double, Double) => Array[Double] = {
 (x, y) => Array(x, y, x * x, x * y, y * y)
}

val krigingVal: Array[(Double, Double)] =
 new UniversalKriging(points, attrFunc, 50, Spherical)
 .predict(location)
/**
 * The user can also do Universal Kriging using :
 * new UniversalKriging(points).predict(location)
 * new UniversalKriging(points, bandwidth).predict(location)
 * new UniversalKriging(points, model).predict(location)
 * new UniversalKriging(points, bandwidth, model).predict(location)
 * new UniversalKriging(points, attrFunc).predict(location)
 * new UniversalKriging(points, attrFunc, bandwidth).predict(location)
 * new UniversalKriging(points, attrFunc, model).predict(location)
 * new UniversalKriging(points, attrFunc, bandwidth, model).predict(location)
 */

It belongs to the class of General Spatial Prediction Models.

This model allows for explicit variation in the trend function (mean
function) constructed as a linear function of spatial attributes; with
the covariance values assumed to be known.

For example if :

x(s) = [1, s1, s2, s1 * s1, s2 * s2, s1 * s2]'
mu(s) = beta0 + beta1*s1 + beta2*s2 + beta3*s1*s1 + beta4*s2*s2 + beta5*s1*s2

Here, the “linear” refers to the linearity in parameters (beta).

mu(s) = x(s)' * beta, beta unknown; s belongs to R
cov[eps(s), eps(s')] known; s, s' belongs to R

The attrFunc function is the attribute function, which is used for
evaluating non-constant spatial trend structures. Unlike the Simple and
Ordinary Kriging models which rely only on the residual values for
evaluating the spatial structures, the General Spatial Models may be
modelled by the user based on the data (viz. evaluating the beta
variable to be used for interpolation).

In case the user does not specify an attribute function, by default the
function used is a quadratic trend function for Point(s1, s2) :

mu(s) = beta0 + beta1*s1 + beta2*s2 + beta3*s1*s1 + beta4*s2*s2 + beta5*s1*s2

General example of a trend function is :

mu(s) = beta0 + Sigma[beta_j * (s1^n_j) * (s2^m_j)]

An elaborate example for understanding the attrFunc is mentioned in
the readme file in geotrellis.raster.interpolation along with
detailed illustrations.

Geostatistical Kriging

//Geostatistical kriging, tuples of (prediction, variance) per prediction point
val attrFunc: (Double, Double) => Array[Double] = {
 (x, y) => Array(x, y, x * x, x * y, y * y)
}

val krigingVal: Array[(Double, Double)] =
 new GeoKriging(points, attrFunc, 50, Spherical)
 .predict(location)
/**
 * Geostatistical Kriging can also be done using:
 * new GeoKriging(points).predict(location)
 * new GeoKriging(points, bandwidth).predict(location)
 * new GeoKriging(points, model).predict(location)
 * new GeoKriging(points, bandwidth, model).predict(location)
 * new GeoKriging(points, attrFunc).predict(location)
 * new GeoKriging(points, attrFunc, bandwidth).predict(location)
 * new GeoKriging(points, attrFunc, model).predict(location)
 * new GeoKriging(points, attrFunc, bandwidth, model).predict(location)
 */

It belongs to the class of General Spatial Prediction Models.

This model relaxes the assumption that the covariance is known. Thus,
the beta values and covariances are simultaneously evaluated and is
computationally more intensive.

mu(s) = x(s)' * beta, beta unknown; s belongs to R
cov[eps(s), eps(s')] unknown; s, s' belongs to R

Voronoi Diagrams

Voronoi diagrams specify a partitioning of the plane into convex
polygonal regions based on an input set of points, with the points being
in one-to-one correspondence with the polygons. Given the set of points
P, let p be a point in that set; then V(p) is the Voronoi
polygon corresponding to p. The interior of V(p) contains the
part of the plane closer to p than any other point in P.

To compute the Voronoi diagram, one actually goes about creating a
triangulation of the input points called the Delaunay triangulation.
In this structure, all the points in P are vertices of a set of
non-overlapping triangles that comprise the set T(P). Each triangle
t in T(P) has the property that the unique circle passing
through the vertices of t has no points of P in its interior.

T(P) and V(P) (with the latter defined as {V(p) | p in P})
are dual to each other in the following sense. Each triangle in
T(P) corresponds to a vertex in V(P) (a corner of some
V(p)), each vertex in T(P) (which is just a point in P)
corresponds to a polygon in V(P), and each edge in T(P)
corresponds to an edge in V(P). The vertices of V(P) are defined
as the centers of the circumscribing circles of the triangles in
T(P). These vertices are connected by edges such that if t(p1)
and t(p2) share an edge, then the Voronoi vertices corresponding to
those two triangles are connected in V(P). This duality between
structures is important because it is much easier to compute the
Delaunay triangulation and to take its dual than it is to directly
compute the Voronoi diagram.

This PR provides a divide-and-conquer approach to computing the Delaunay
triangulation based on Guibas and Stolfi’s 1985 ACM Transactions on
Graphics paper. In this case, the oldies are still the goodies, since
only minor performance increases have been achieved over this baseline
result—hardly worth the increase in complexity.

The triangulation algorithm starts by ordering vertices according to
(ascending) x-coordinate, breaking ties with the y-coordinate. Duplicate
vertices are ignored. Then, the right and left halves of the vertices
are recursively triangulated. To stitch the resulting triangulations, we
find a vertex from each of the left and right results so that the
connecting edge is guaranteed to be in the convex hull of the merged
triangulations; call this edge base. Now, consider a circle that
floats upwards and comes into contact with the endpoints of base.
This bubble will, by changing its radius, squeeze through the gap
between the endpoints of base, and rise until it encounters another
vertex. By definition, this ball has no vertices of P in its
interior, and so the three points on its boundary are the vertices of a
Delaunay triangle. See the following image for clarification:

[image: ../_images/stitch-triangles.png]

Here, we note that the red triangle’s circumscribing ball contains
vertices of the blue triangle, and so we will expect that the red
triangle will not be part of the final triangulation. As such the
leftmost edge of the red triangle be deleted before the triangulation
can be updated to include the triangle circumscribed by the solid black
circle.

This process continues, with the newly created edge serving as the new
base, and the ball rising through until another vertex is
encountered and so on, until the ball exits out the top and the
triangulation is complete.

Mesh Representation

The output of Delaunay triangulation and Voronoi diagrams are in the
form of meshes represented by the half-edge structure. These structures
can be thought of as directed edges between points in space, where an
edge needs two half-edges to complete its representation. A half-edge,
e, has three vital pieces of information: a vertex to which it
points, e.vert; a pointer to its complementary half-edge,
e.flip; and a pointer to the next half-edge in the polygon,
e.next. The following image might be useful:

[image: ../_images/halfedge.png]

Note that half-edges are only useful for representing orientable
manifolds with boundary. As such, half edge structures couldn’t be used
to represent a Moebius strip, nor could they be used for meshes where
two polygons share a vertex without sharing an edge. Furthermore, by
convention, polygon edges are wound in counter-clockwise order. We also
allow each half-edge to point to an attribute structure for the face
that it bounds. In the case of a Delaunay triangle, that face attribute
would be the circumscribing circle’s center; edges on the boundary of a
mesh have no face attribute (they are stored as Option[F] where
F is the type of the face attribute).

 Spark and GeoTrellis

Spark and GeoTrellis

This documentation series describes the use of the vast
geotrellis.spark module.

On Distributed Computation

Note

Distributed computing is difficult to get right. Luckily, we
are able to lean on the RDD abstraction provided by Apache Spark
to simplify matters somewhat. Still, the conceptual difficulties in
geotrellis.spark are arguably as great as can be found in any
part of the GeoTrellis library. As such, the discussion in this
portion of the documentation assumes a passing familiarity with the
key concepts of geotrellis.raster. If this is a difficulty,
please refer to the documentation for the
geotrellis.raster package.

Consider the (relatively) simple case of carrying out local addition on
two raster tiles. In the abstract, this merely involves adding together
corresponding values from two different Tiles. Practically, things
can quickly become more complex: what if one Tile‘s data covers a
larger extent than the other? In general, how do we determine what
‘corresponding values’ means in such a context? (Some specifics related
to this question are covered in the geotrellis.spark documentation
on joins)

What we need, then, is to pass around tiles as well as some kind of
associated data. In addition, the Tile abstraction makes sense only
in a particular place (in space and/or time) - the data in my Tile
represents the elevation of terrain in this or that actual place which
has such and such spatial relations to other Tiles that represent
neighboring terrain elevations. If your application for finding
directions displayed street data for Beijing in the middle of downtown
Philadelphia, it would be extremely difficult to actually use. From the
perspective of application performance during spatially-aware
computations (say, for instance, that I want to compute the average
elevation for every Tile‘s cell within a five mile radius of a
target location) it is also useful to have an index which provides a
sort of shortcut for tracking down the relevant information.

The need for intelligently indexed tiles is especially great when
thinking about distributing work over those tiles across multiple
computers. The tightest bottleneck in such a configuration is the
communication between different nodes in the network. What follows is
that reducing the likelihood of communication between nodes is one of
the best ways to improve performance. Having intelligently indexed
tilesets allows us to partition data according to expectations about
which Tiles each node will require to calculate its results.

Hopefully you’re convinced that for a wide variety of GeoTrellis
use-cases it makes sense to pass around tiles with indices to which they
correspond as well as metadata. This set of concerns is encoded in the
type system as RDD[(K, V)] with Metadata[M].

For more information on this type, see Tile
Layers.

 The ETL Tool

The ETL Tool

When working with GeoTrellis, often the first task is to load a set of
rasters to perform reprojection, mosaicing and pyramiding before saving
them as a GeoTrellis layer. It is possible, and not too difficult, to
use core GreoTrellis features to write a program to accomplish this
task. However, after writing a number of such programs we noticed two
patterns emerge:

	Often an individual ETL process will require some modification that
is orthogonal to the core ETL logic

	When designing an ETL process it is useful to first run it a smaller
dataset, perhaps locally, as a verification

	Once written it would be useful to re-run the same ETL process with
different input and output storage media

To assist these patterns spark-etl project implements a plugin
architecture for tile input sources and output sinks which allows you to
write a compact ETL program without having to specify the type and the
configuration of the input and output at compile time. The ETL process
is broken into three stages: load, tile, and save. This
affords an opportunity to modify the dataset using any of the GeoTrellis
operations in between the stages.

Sample ETL Application

import geotrellis.raster.Tile
import geotrellis.spark._
import geotrellis.spark.etl.Etl
import geotrellis.spark.etl.config.EtlConf
import geotrellis.spark.util.SparkUtils
import geotrellis.vector.ProjectedExtent
import org.apache.spark.SparkConf

object GeoTrellisETL {
 type I = ProjectedExtent // or TemporalProjectedExtent for temporal ingest
 type K = SpatialKey // or SpaceTimeKey for temporal ingest
 type V = Tile // or MultibandTile to ingest multiband tile
 def main(args: Array[String]): Unit = {
 implicit val sc = SparkUtils.createSparkContext("GeoTrellis ETL", new SparkConf(true))
 try {
 EtlConf(args) foreach { conf =>
 /* parse command line arguments */
 val etl = Etl(conf)
 /* load source tiles using input module specified */
 val sourceTiles = etl.load[I, V]
 /* perform the reprojection and mosaicing step to fit tiles to LayoutScheme specified */
 val (zoom, tiled) = etl.tile[I, V, K](sourceTiles)
 /* save and optionally pyramid the mosaiced layer */
 etl.save[K, V](LayerId(etl.input.name, zoom), tiled)
 }
 } finally {
 sc.stop()
 }
 }
}

Above is just Etl.ingest function implementation, so it is possible
to rewrite same functionality:

import geotrellis.spark._
import geotrellis.raster.Tile
import geotrellis.spark.util.SparkUtils
import geotrellis.vector.ProjectedExtent
import org.apache.spark.SparkConf

object SinglebandIngest {
 def main(args: Array[String]): Unit = {
 implicit val sc = SparkUtils.createSparkContext("GeoTrellis ETL SinglebandIngest", new SparkConf(true))
 try {
 Etl.ingest[ProjectedExtent, SpatialKey, Tile](args)
 } finally {
 sc.stop()
 }
 }
}

Etl.ingest function can be used with following types variations:

	Etl.ingest[ProjectedExtent, SpatialKey, Tile]

	Etl.ingest[ProjectedExtent, SpatialKey, MultibandTile]

	Etl.ingest[TemporalProjectedExtent, SpaceTimeKey, Tile]

	Etl.ingest[TemporalProjectedExtent, SpaceTimeKey, MultibandTile]

For temporal ingest TemporalProjectedExtent and SpaceTimeKey
should be used, for spatial ingest ProjectedExtent and
SpatialKey.

User-defined ETL Configs

The above sample application can be placed in a new SBT project that has
a dependency on
"org.locationtech.geotrellis" %% "geotrellis-spark-etl" % s"$VERSION"
in addition to dependency on spark-core. and built into an assembly
with sbt-assembly plugin. You should be careful to include a
assemblyMergeStrategy for sbt assembly plugin as it is provided in
spark-etl build file.

At this point you would create a seperate App object for each one of
your ETL configs.

Built-in ETL Configs

For convinence and as an example the spark-etl project provides two
App objects that perform vanilla ETL:

	geotrellis.spark.etl.SinglebandIngest

	geotrellis.spark.etl.MultibandIngest

You may use them by building an assembly jar of spark-etl project as
follows:

cd geotrellis
./sbt
sbt> project spark-etl
sbt> assembly

The assembly jar will be placed in
geotrellis/spark-etl/target/scala-2.11 directory.

Running the Spark Job

For maximum flexibility it is desirable to run spark jobs with
spark-submit. In order to achieve this spark-core dependency
must be listed as provided and sbt-assembly plugin used to
create the fat jar as described above. Once the assembly jar is read
outputs and inputs can be setup through command line arguments like so:

#!/bin/sh
export JAR="geotrellis-etl-assembly-1.0.0-SNAPSHOT.jar"

spark-submit \
--class geotrellis.spark.etl.SinglebandIngest \
--master local[*] \
--driver-memory 2G \
$JAR \
--backend-profiles "file://backend-profiles.json" \
--input "file://input.json" \
--output "file://output.json"

Note that the arguments before the $JAR configure SparkContext
and arguments after configure GeoTrellis ETL inputs and outputs.

Command Line Arguments

	Option
	Description

	backend-profiles
	Path to a json
file (local fs
/ hdfs) with
credentials
for ingest
datasets
(required
field)

	input
	Path to a json
file (local fs
/ hdfs) with
datasets to
ingest, with
optional
credentials

	output
	Path to a json
file (local fs
/ hdfs) with
output backend
params to
ingest, with
optional
credentials

Backend Profiles JSON

{
 "backend-profiles": [{
 "name": "accumulo-name",
 "type": "accumulo",
 "zookeepers": "zookeepers",
 "instance": "instance",
 "user": "user",
 "password": "password"
 },
 {
 "name": "cassandra-name",
 "type": "cassandra",
 "allowRemoteDCsForLocalConsistencyLevel": false,
 "localDc": "datacenter1",
 "usedHostsPerRemoteDc": 0,
 "hosts": "hosts",
 "replicationStrategy": "SimpleStrategy",
 "replicationFactor": 1,
 "user": "user",
 "password": "password"
 }]
}

Sets of named profiles for each backend.

Output JSON

{
 "backend":{
 "type":"accumulo",
 "path":"output",
 "profile":"accumulo-name"
 },
 "breaks":"0:ffffe5ff;0.1:f7fcb9ff;0.2:d9f0a3ff;0.3:addd8eff;0.4:78c679ff;0.5:41ab5dff;0.6:238443ff;0.7:006837ff;1:004529ff",
 "reprojectMethod":"buffered",
 "cellSize":{
 "width":256.0,
 "height":256.0
 },
 "encoding":"geotiff",
 "tileSize":256,
 "layoutExtent":{
 "xmin":1.0,
 "ymin":2.0,
 "xmax":3.0,
 "ymax":4.0
 },
 "resolutionThreshold":0.1,
 "pyramid":true,
 "resampleMethod":"nearest-neighbor",
 "keyIndexMethod":{
 "type":"zorder"
 },
 "layoutScheme":"zoomed",
 "cellType":"int8",
 "crs":"EPSG:3857"
}

	Key
	Value

	backend
	Backend
description is
presented below

	breaks
	Breaks string for
render output
(optional field)

	partitions
	Partitions number
during pyramid
build

	reprojectMethod
	buffered,
per-tile

	cellSize
	Cell size

	encoding
	png,
geotiff for
render output

	tileSize
	Tile size
(optional
field)If not set,
the default size
of output tiles
is 256x256

	layoutExtent
	Layout extent
(optional field)

	resolutionThreshold
	Resolution for
user defined
Layout Scheme
(optional field)

	pyramid
	true,
false -
ingest with or
without building
a pyramid

	resampleMethod
	nearest-neighbo
r,
bilinear,
cubic-convoluti
on,
cubic-spline,
lanczos

	keyIndexMethod
	zorder,
row-major,
hilbert

	layoutScheme
	tms,
floating
(optional field)

	cellType
	int8,
int16, etc...
(optional field)

	crs
	Destination crs
name (example:
EPSG:3857)
(optional field)

Backend Keyword

	Key
	Value

	type
	Input backend type (file / hadoop / s3 / accumulo / cassandra)

	path
	Input path (local path / hdfs), or s3:// url

	profile
	Profile name to use for input

Supported Layout Schemes

	Layout Scheme
	Options

	zoomed
	Zoomed layout scheme

	floating
	Floating layout scheme in a native projection

KeyIndex Methods

	Key
	Options

	type
	zorder,
row-major,
hilbert

	temporalResolution
	Temporal
resolution for
temporal indexing
(optional field)

	timeTag
	Time tag name for
input geotiff
tiles (optional
field)

	timeFormat
	Time format to
parse time stored
in time tag
geotiff tag
(optional field)

Input JSON

[{
 "format": "geotiff",
 "name": "test",
 "cache": "NONE",
 "noData": 0.0,
 "clip": {
 "xmin":1.0,
 "ymin":2.0,
 "xmax":3.0,
 "ymax":4.0
 },
 "backend": {
 "type": "hadoop",
 "path": "input"
 }
}]

	Key
	Value

	format
	Format of the
tile files to be
read (ex:
geotiff)

	name
	Input dataset
name

	cache
	Spark RDD cache
strategy

	noData
	NoData value

	clip
	Extent in target
CRS to clip the
input source

	crs
	Destination crs
name (example:
EPSG:3857)
(optional field)

	maxTleSize
	Inputs will be
broken up into
smaller tiles of
the given size
(optional
field)(example:
256 returns
256x256 tiles)

	numPartitions
	How many
partitions Spark
should make when
repartioning
(optional field)

Supported Formats

	Format
	Options

	geotiff
	Spatial ingest

	temporal-geotiff
	Temporal ingest

Supported Inputs

	Input
	Options

	hadoop
	path (local path / hdfs)

	s3
	s3:// url

Supported Outputs

	Output
	Options

	hadoop
	Path

	accumulo
	Table name

	cassandra
	Table name with keysapce (keyspace.tablename)

	s3
	s3:// url

	render
	Path

Accumulo Output

Accumulo output module has two write strategies:

	hdfs strategy uses Accumulo bulk import

	socket strategy uses Accumulo BatchWriter

When using hdfs strategy ingestPath argument will be used as the
temporary directory where records will be written for use by Accumulo
bulk import. This directory should ideally be an HDFS path.

Layout Scheme

GeoTrellis is able to tile layers in either ZoomedLayoutScheme,
matching TMS pyramid, or FloatingLayoutScheme, matching the native
resolution of input raster. These alternatives may be selecting by using
the layoutScheme option.

Note that ZoomedLayoutScheme needs to know the world extent, which
it gets from the CRS, in order to build the TMS pyramid layout. This
will likely cause resampling of input rasters to match the resolution of
the TMS levels.

On other hand FloatingLayoutScheme will discover the native
resolution and extent and partition it by given tile size without
resampling.

User-Defined Layout

You may bypass the layout scheme logic by providing layoutExtent,
cellSize, and cellType instead of the layoutScheme option.
Together with tileSize option this is enough to fully define the
layout and start the tiling process.

Reprojection

spark-etl project supports two methods of reprojection: buffered
and per-tile. They provide a trade-off between accuracy and
flexibility.

Buffered reprojection method is able to sample pixels past the tile
boundaries by performing a neighborhood join. This method is the default
and produces the best results. However it requires that all of the
source tiles share the same CRS.

Per tile reproject method can not consider pixels past the individual
tile boundaries, even if they exist elsewhere in the dataset. Any pixels
past the tile boundaries will be as NODATA when interpolating. This
restriction allows for source tiles to have a different projections per
tile. This is an effective way to unify the projections for instance
when projection from multiple UTM projections to WebMercator.

Rendering a Layer

render output module is different from other modules in that it does
not save a GeoTrellis layer but rather provides a way to render a layer,
after tiling and projection, to a set of images. This is useful to
either verify the ETL process or render a TMS pyramid.

The path module argument is actually a path template, that allows
the following substitution:

	{x} tile x coordinate

	{y} tile y coordinate

	{z} layer zoom level

	{name} layer name

A sample render output configuration template could be:

{
 "path": "s3://tms-bucket/layers/{name}/{z}-{x}-{y}.png",
 "ingestType": {
 "format":"geotiff",
 "output":"render"
 }
}

Extension

In order to provide your own input or output modules you must extend
InputPlugin [https://geotrellis.github.io/scaladocs/latest/#geotrellis.spark.etl.InputPlugin]
and OutputPlugin [https://geotrellis.github.io/scaladocs/latest/#geotrellis.spark.etl.OutputPlugin]
and register them in the Etl constructor via a TypedModule.

Examples

Standard ETL assembly provides two classes to ingest objects: class to
ingest singleband tiles and class to ingest multiband tiles. The class
name to ingest singleband tiles is
geotrellis.spark.etl.SinglebandIngest and to ingest multiband tiles
is geotrellis.spark.etl.MultibandIngest.

Every example can be launched using:

#!/bin/sh
export JAR="geotrellis-etl-assembly-0.10-SNAPSHOT.jar"

spark-submit \
--class geotrellis.spark.etl.{SinglebandIngest | MultibandIngest} \
--master local[*] \
--driver-memory 2G \
$JAR \
--input "file://input.json" \
--output "file://output.json" \
--backend-profiles "file://backend-profiles.json"

Example Backend Profile

backend-profiles.json:

{
 "backend-profiles":[
 {
 "name":"accumulo-name",
 "type":"accumulo",
 "zookeepers":"zookeepers",
 "instance":"instance",
 "user":"user",
 "password":"password"
 },
 {
 "name":"cassandra-name",
 "type":"cassandra",
 "allowRemoteDCsForLocalConsistencyLevel":false,
 "localDc":"datacenter1",
 "usedHostsPerRemoteDc":0,
 "hosts":"hosts",
 "replicationStrategy":"SimpleStrategy",
 "replicationFactor":1,
 "user":"user",
 "password":"password"
 }
]
}

Example Output JSON

output.json:

{
 "backend":{
 "type":"accumulo",
 "path":"output",
 "profile":"accumulo-name"
 },
 "breaks":"0:ffffe5ff;0.1:f7fcb9ff;0.2:d9f0a3ff;0.3:addd8eff;0.4:78c679ff;0.5:41ab5dff;0.6:238443ff;0.7:006837ff;1:004529ff",
 "reprojectMethod":"buffered",
 "cellSize":{
 "width":256.0,
 "height":256.0
 },
 "encoding":"geotiff",
 "tileSize":256,
 "layoutExtent":{
 "xmin":1.0,
 "ymin":2.0,
 "xmax":3.0,
 "ymax":4.0
 },
 "resolutionThreshold":0.1,
 "pyramid":true,
 "resampleMethod":"nearest-neighbor",
 "keyIndexMethod":{
 "type":"zorder"
 },
 "layoutScheme":"zoomed",
 "cellType":"int8",
 "crs":"EPSG:3857"
}

Example Input JSON

input.json:

{
 "format": "geotiff",
 "name": "test",
 "cache": "NONE",
 "noData": 0.0,
 "backend": {
 "type": "hadoop",
 "path": "input"
 }
}

Backend JSON examples (local fs)

"backend": {
 "type": "hadoop",
 "path": "file:///Data/nlcd/tiles"
}

Backend JSON example (hdfs)

"backend": {
 "type": "hadoop",
 "path": "hdfs://nlcd/tiles"
}

Backend JSON example (s3)

"backend": {
 "type": "s3",
 "path": "s3://com.azavea.datahub/catalog"
}

Backend JSON example (accumulo)

"backend": {
 "type": "accumulo",
 "profile": "accumulo-gis",
 "path": "nlcdtable"
}

Backend JSON example (set of PNGs into S3)

"backend": {
 "type": "render",
 "path": "s3://tms-bucket/layers/{name}/{z}-{x}-{y}.png"
}

Backend JSON example (set of PNGs into hdfs or local fs)

"backend": {
 "type": "render",
 "path": "hdfs://path/layers/{name}/{z}-{x}-{y}.png"
}

 Extending GeoTrellis Types

Extending GeoTrellis Types

Custom Keys

Want to jump straight to a code example? See
VoxelKey.scala [https://github.com/geotrellis/geotrellis/tree/master/doc-examples/src/main/scala/geotrellis/doc/examples/spark/VoxelKey.scala]

Keys are used to index (or “give a position to”) tiles in a tile layer.
Typically these tiles are arranged in some conceptual grid, for instance in
a two-dimensional matrix via a SpatialKey [https://github.com/geotrellis/geotrellis/blob/master/spark/src/main/scala/geotrellis/spark/SpatialKey.scala].
There is also a SpaceTimeKey [https://github.com/geotrellis/geotrellis/blob/master/spark/src/main/scala/geotrellis/spark/SpaceTimeKey.scala],
which arranges tiles in a cube of two spatial dimensions and one time
dimension.

In this way, keys define how a tile layer is shaped. Here, we provide an
example of how to define a new key type, should you want a custom one
for your application.

The VoxelKey type

A voxel is the 3D analogue to a 2D pixel. By defining a new VoxelKey
type, we can create grids of tiles that have a 3D spatial relationship.
The class definition itself is simple:

case class VoxelKey(x: Int, y: Int, z: Int)

Key usage in many GeoTrellis operations is done generically with a K
type parameter, for instance in the S3LayerReader class:

/* Read a tile layer from S3 via a given `LayerId`. Function signature slightly simplified. */
S3LayerReader.read[K: Boundable: JsonFormat, V, M]: LayerId => RDD[(K, V)] with Metadata[M]

Where the pattern [A: Trait1: Trait2: ...] means that for whichever
A you end up using, it must have an implicit instance of Trait1
and Trait2 (and any others) in scope. Really it’s just syntactic
sugar for [A](implicit ev0: Trait1[A], ev1: Trait2[A], ...). The
read method above would be used in real life like:

val reader: S3LayerReader = ...

// The type on `rdd` is often left off for brevity.
val rdd: RDD[(SpatialKey, MultibandTile)] with Metadata[LayoutDefinition] =
 reader.read[SpatialKey, MultibandTile, LayoutDefinition]("someLayer")

Boundable [https://github.com/geotrellis/geotrellis/blob/master/spark/src/main/scala/geotrellis/spark/Boundable.scala],
SpatialComponent, and JsonFormat are frequent constraints on keys.
Let’s give those typeclasses some implementations:

import geotrellis.spark._
import spray.json._

// A companion object is a good place for typeclass instances.
object VoxelKey {

 // What are the minimum and maximum possible keys in the key space?
 implicit object Boundable extends Boundable[VoxelKey] {
 def minBound(a: VoxelKey, b: VoxelKey) = {
 VoxelKey(math.min(a.x, b.x), math.min(a.y, b.y), math.min(a.z, b.z))
 }

 def maxBound(a: VoxelKey, b: VoxelKey) = {
 VoxelKey(math.max(a.x, b.x), math.max(a.y, b.y), math.max(a.z, b.z))
 }
 }

 /** JSON Conversion */
 implicit object VoxelKeyFormat extends RootJsonFormat[VoxelKey] {
 // See full example for real code.
 def write(k: VoxelKey) = ...

 def read(value: JsValue) = ...
 }

 /** Since [[VoxelKey]] has x and y coordinates, it can take advantage of
 * the [[SpatialComponent]] lens. Lenses are essentially "getters and setters"
 * that can be used in highly generic code.
 */
 implicit val spatialComponent = {
 Component[VoxelKey, SpatialKey](
 /* "get" a SpatialKey from VoxelKey */
 k => SpatialKey(k.x, k.y),
 /* "set" (x,y) spatial elements of a VoxelKey */
 (k, sk) => VoxelKey(sk.col, sk.row, k.z)
)
 }
}

With these, VoxelKey is now (almost) usable as a key type in
GeoTrellis.

A Z-Curve SFC for VoxelKey

Many operations require a KeyIndex [https://github.com/geotrellis/geotrellis/blob/master/spark/src/main/scala/geotrellis/spark/io/index/KeyIndex.scala]
as well, which are usually implemented with some hardcoded key type.
VoxelKey would need one as well, which we will back by a Z-Curve for
this example:

/** A [[KeyIndex]] based on [[VoxelKey]]. */
class ZVoxelKeyIndex(val keyBounds: KeyBounds[VoxelKey]) extends KeyIndex[VoxelKey] {
 /* ''Z3'' here is a convenient shorthand for any 3-dimensional key. */
 private def toZ(k: VoxelKey): Z3 = Z3(k.x, k.y, k.z)

 def toIndex(k: VoxelKey): Long = toZ(k).z

 def indexRanges(keyRange: (VoxelKey, VoxelKey)): Seq[(Long, Long)] =
 Z3.zranges(toZ(keyRange._1), toZ(keyRange._2))
}

And with a KeyIndex written, it will of course need its own
JsonFormat, which demands some additional glue to make fully functional.
For more details, see ShardingKeyIndex.scala [https://github.com/geotrellis/geotrellis/blob/master/doc-examples/src/main/scala/geotrellis/doc/examples/spark/ShardingKeyIndex.scala].

We now have a new fully functional key type which defines a tile cube of
three spatial dimensions. Of course, there is nothing stopping you from
defining a key in any way you like: it could have three spatial and one
time dimension (EinsteinKey?) or even ten spatial dimensions
(StringTheoryKey?). Happy tiling.

Custom KeyIndexes

Want to dive right into code? See:
ShardingKeyIndex.scala [https://github.com/geotrellis/geotrellis/tree/master/doc-examples/src/main/scala/geotrellis/doc/examples/spark/ShardingKeyIndex.scala]

The KeyIndex trait

The KeyIndex trait is high-level representation of Space Filling
Curves, and for us it is critical to Tile layer input/output. As of
GeoTrellis 1.0.0, its subclasses are:

	ZSpatialKeyIndex

	ZSpaceTimeKeyIndex

	HilbertSpatialKeyIndex

	HilbertSpaceTimeKeyIndex

	RowMajorSpatialKeyIndex

While the subclass constructors can be used directly when creating an
index, we always reference them generically elsewhere as KeyIndex.
For instance, when we write an RDD, we need to supply a generic
KeyIndex:

S3LayerWriter.write[K, V, M]: (LayerId, RDD[(K, V)] with Metadata[M], KeyIndex[K]) => Unit

but when we read or update, we don’t:

S3LayerReader.read[K, V, M]: LayerId => RDD[(K, V)] with Metadata[M]

S3LayerUpdater.update[K, V, M]: (LayerId, RDD[(K, V)] with Metadata[M]) => Unit

Luckily for the end user of GeoTrellis, this means they don’t need to
keep track of which KeyIndex subclass they used when they initially
wrote the layer. The KeyIndex itself is stored a JSON, and
critically, (de)serialized generically. Meaning:

/* Instantiate as the parent trait */
val index0: KeyIndex[SpatialKey] = new ZSpatialKeyIndex(KeyBounds(
 SpatialKey(0, 0),
 SpatialKey(9, 9)
))

/* Serializes at the trait level, not the subclass */
val json: JsValue = index0.toJson

/* Deserialize generically */
val index1: KeyIndex[SpatialKey] = json.convertTo[KeyIndex[SpatialKey]]

index0 == index1 // true

Extending KeyIndex

To achieve the above, GeoTrellis has a central JsonFormat registry
for the KeyIndex subclasses. When creating a new KeyIndex type, we
need to:

	Write the index type itself, extending KeyIndex

	Write a standard spray.json.JsonFormat for it

	Write a Registrator class that registers our new Format with
GeoTrellis

To extend KeyIndex, we need to supply implementations for three
methods:

/* Most often passed in as an argument ''val'' */
def keyBounds: KeyBounds[K] = ???

/* The 1-dimensional index in the SFC of a given key */
def toIndex(key: K): Long = ???

/* Ranges of results of `toIndex` */
def indexRanges(keyRange: (K, K)): Seq[(Long, Long)] = ???

where K will typically be hard-coded as either SpatialKey or
SpaceTimeKey, unless you’ve defined some custom key type for your
application. K is generic in our example ShardingKeyIndex, since
it holds an inner KeyIndex:

class ShardingKeyIndex[K](val inner: KeyIndex[K], val shardCount: Int) extends KeyIndex[K] { ... }

Writing and Registering a JsonFormat

Supplying a JsonFormat for our new type is fairly ordinary, with a
few caveats:

import spray.json._

class ShardingKeyIndexFormat[K: JsonFormat: ClassTag] extends RootJsonFormat[ShardingKeyIndex[K]] {
 /* This is the foundation of the reflection-based deserialization process */
 val TYPE_NAME = "sharding"

 /* Your `write` function must follow this format, with two fields
 * `type` and `properties`. The `properties` JsObject can contain anything.
 */
 def write(index: ShardingKeyIndex[K]): JsValue = {
 JsObject(
 "type" -> JsString(TYPE_NAME),
 "properties" -> JsObject(
 "inner" -> index.inner.toJson,
 "shardCount" -> JsNumber(index.shardCount)
)
)
 }

 /* You should check the deserialized `typeName` matches the original */
 def read(value: JsValue): ShardingKeyIndex[K] = {
 value.asJsObject.getFields("type", "properties") match {
 case Seq(JsString(typeName), properties) if typeName == TYPE_NAME => {
 properties.asJsObject.getFields("inner", "shardCount") match {
 case Seq(inner, JsNumber(shardCount)) =>
 new ShardingKeyIndex(inner.convertTo[KeyIndex[K]], shardCount.toInt)
 case _ => throw new DeserializationException("Couldn't deserialize ShardingKeyIndex.")
 }
 }
 case _ => throw new DeserializationException("Wrong KeyIndex type: ShardingKeyIndex expected.")
 }
 }
}

Note

Our Format here only has a K constraint because of our
inner KeyIndex. Yours likely won’t.

Now for the final piece of the puzzle, the format Registrator. With the
above in place, it’s quite simple:

import geotrellis.spark.io.json._

/* This class must have no arguments! */
class ShardingKeyIndexRegistrator extends KeyIndexRegistrator {
 def register(keyIndexRegistry: KeyIndexRegistry): Unit = {
 implicit val spaceFormat = new ShardingKeyIndexFormat[SpatialKey]()
 implicit val timeFormat = new ShardingKeyIndexFormat[SpaceTimeKey]()

 keyIndexRegistry.register(
 KeyIndexFormatEntry[SpatialKey, ShardingKeyIndex[SpatialKey]](spaceFormat.TYPE_NAME)
)
 keyIndexRegistry.register(
 KeyIndexFormatEntry[SpaceTimeKey, ShardingKeyIndex[SpaceTimeKey]](timeFormat.TYPE_NAME)
)
 }
}

At its simplest for an Index with a hard-coded key type, a registrator
could look like:

class MyKeyIndexRegistrator extends KeyIndexRegistrator {
 def register(keyIndexRegistry: KeyIndexRegistry): Unit = {
 implicit val format = new MyKeyIndexFormat()

 keyIndexRegistry.register(
 KeyIndexFormatEntry[SpatialKey, MyKeyIndex](format.TYPE_NAME)
)
 }
}

Plugging a Registrator in

GeoTrellis needs to know about your new Registrator. This is done
through an application.conf in your-project/src/main/resources/:

// in `application.conf`
geotrellis.spark.io.index.registrator="geotrellis.doc.examples.spark.ShardingKeyIndexRegistrator"

GeoTrellis will automatically detect the presence of this file, and use
your Registrator.

Testing

Writing unit tests for your new Format is the best way to ensure you’ve
set up everything correctly. Tests for ShardingKeyIndex can be found
in
doc-examples/src/test/scala/geotrellis/doc/examples/spark/ShardingKeyIndexSpec.scala,
and can be ran in sbt with:

geotrellis > project doc-examples
doc-examples > testOnly geotrellis.doc.examples.spark.ShardingKeyIndexSpec

 GeoTrellis Module Hierarchy

GeoTrellis Module Hierarchy

This is a full list of all GeoTrellis modules. While there is some
interdependence between them, you can depend on as many (or as few) of
them as you want in your build.sbt.

geotrellis-accumulo

Allows the use of Apache Accumulo [https://accumulo.apache.org/] as
a Tile layer backend.

Provides: geotrellis.spark.io.accumulo.*

	Save and load layers to and from Accumulo. Query large layers
efficiently using the layer query API.

geotrellis-cassandra

Allows the use of Apache Cassandra [http://cassandra.apache.org/] as
a Tile layer backend.

Provides: geotrellis.spark.io.cassandra.*

	Save and load layers to and from Cassandra. Query large layers
efficiently using the layer query API.

geotrellis-etl

A command-line tool for streamlining the ingest process.

Provides: geotrellis.spark.etl.*

	Parse command line options for input and output of ETL (Extract,
Transform, and Load) applications

	Utility methods that make ETL applications easier for the user to
build.

	Work with input rasters from the local file system, HDFS, or S3

	Reproject input rasters using a per-tile reproject or a seamless
reprojection that takes into account neighboring tiles.

	Transform input rasters into layers based on a ZXY layout scheme

	Save layers into Accumulo, S3, HDFS or the local file system.

geotrellis-geomesa

Experimental. GeoTrellis compatibility for the distributed feature
store GeoMesa [http://www.geomesa.org/].

Provides: geotrellis.spark.io.geomesa.*

	Save and load RDDs of features to and from GeoMesa.

geotrellis-hbase

Allows the use of Apache HBase [http://hbase.apache.org/] as a Tile
layer backend.

Provides: geotrellis.spark.io.hbase.*

	Save and load layers to and from HBase. Query large layers
efficiently using the layer query API.

geotrellis-proj4

Provides: geotrellis.proj4.*, org.osgeo.proj4.* (Java)

	Represent a Coordinate Reference System (CRS) based on Ellipsoid,
Datum, and Projection.

	Translate CRSs to and from proj4 string representations.

	Lookup CRS’s based on EPSG and other codes.

	Transform (x, y) coordinates from one CRS to another.

geotrellis-raster

Types and algorithms for Raster processing.

Provides: geotrellis.raster.*

	Provides types to represent single- and multi-band rasters,
supporting Bit, Byte, UByte, Short, UShort, Int, Float, and Double
data, with either a constant NoData value (which improves
performance) or a user defined NoData value.

	Treat a tile as a collection of values, by calling “map” and
“foreach”, along with floating point valued versions of those methods
(separated out for performance).

	Combine raster data in generic ways.

	Render rasters via color ramps and color maps to PNG and JPG images.

	Read GeoTiffs with DEFLATE, LZW, and PackBits compression, including
horizontal and floating point prediction for LZW and DEFLATE.

	Write GeoTiffs with DEFLATE or no compression.

	Reproject rasters from one CRS to another.

	Resample of raster data.

	Mask and Crop rasters.

	Split rasters into smaller tiles, and stitch tiles into larger
rasters.

	Derive histograms from rasters in order to represent the distribution
of values and create quantile breaks.

	Local Map Algebra operations: Abs, Acos, Add, And, Asin, Atan, Atan2,
Ceil, Cos, Cosh, Defined, Divide, Equal, Floor, Greater,
GreaterOrEqual, InverseMask, Less, LessOrEqual, Log, Majority, Mask,
Max, MaxN, Mean, Min, MinN, Minority, Multiply, Negate, Not, Or, Pow,
Round, Sin, Sinh, Sqrt, Subtract, Tan, Tanh, Undefined, Unequal,
Variance, Variety, Xor, If

	Focal Map Algebra operations: Hillshade, Aspect, Slope, Convolve,
Conway’s Game of Life, Max, Mean, Median, Mode, Min, MoransI,
StandardDeviation, Sum

	Zonal Map Algebra operations: ZonalHistogram, ZonalPercentage

	Operations that summarize raster data intersecting polygons: Min,
Mean, Max, Sum.

	Cost distance operation based on a set of starting points and a
friction raster.

	Hydrology operations: Accumulation, Fill, and FlowDirection.

	Rasterization of geometries and the ability to iterate over cell
values covered by geometries.

	Vectorization of raster data.

	Kriging Interpolation of point data into rasters.

	Viewshed operation.

	RegionGroup operation.

geotrellis-raster-testkit

Integration tests for geotrellis-raster.

	Build test raster data.

	Assert raster data matches Array data or other rasters in scalatest.

geotrellis-s3

Allows the use of Amazon S3 [https://aws.amazon.com/s3/] as a Tile
layer backend.

Provides: geotrellis.spark.io.s3.*

	Save/load raster layers to/from the local filesystem or HDFS using
Spark’s IO API.

	Save spatially keyed RDDs of byte arrays to z/x/y files in S3. Useful
for saving PNGs off for use as map layers in web maps.

geotrellis-shapefile

Provides: geotrellis.shapefile.*

	Read geometry and feature data from shapefiles into GeoTrellis types
using GeoTools.

geotrellis-slick

Adds PostGis support for Slick [https://github.com/slick/slick] use
with GeoTrellis.

Provides: geotrellis.slick.*

	Save and load geometry and feature data to and from PostGIS using the
slick scala database library.

	Perform PostGIS ST_ operations in PostGIS through scala.

geotrellis-spark

Tile layer algorithms powered by Apache
Spark [http://spark.apache.org/].

Provides: geotrellis.spark.*

	Generic way to represent key value RDDs as layers, where the key
represents a coordinate in space based on some uniform grid layout,
optionally with a temporal component.

	Represent spatial or spatiotemporal raster data as an RDD of raster
tiles.

	Generic architecture for saving/loading layers RDD data and metadata
to/from various backends, using Spark’s IO API with Space Filling
Curve indexing to optimize storage retrieval (support for Hilbert
curve and Z order curve SFCs). HDFS and local file system are
supported backends by default, S3 and Accumulo are supported backends
by the geotrellis-s3 and geotrellis-accumulo projects,
respectively.

	Query architecture that allows for simple querying of layer data by
spatial or spatiotemporal bounds.

	Perform map algebra operations on layers of raster data, including
all supported Map Algebra operations mentioned in the
geotrellis-raster feature list.

	Perform seamless reprojection on raster layers, using neighboring
tile information in the reprojection to avoid unwanted NoData cells.

	Pyramid up layers through zoom levels using various resampling
methods.

	Types to reason about tiled raster layouts in various CRS’s and
schemes.

	Perform operations on raster RDD layers: crop, filter, join, mask,
merge, partition, pyramid, render, resample, split, stitch, and tile.

	Polygonal summary over raster layers: Min, Mean, Max, Sum.

	Save spatially keyed RDDs of byte arrays to z/x/y files into HDFS or
the local file system. Useful for saving PNGs off for use as map
layers in web maps or for accessing GeoTiffs through z/x/y tile
coordinates.

	Utilities around creating spark contexts for applications using
GeoTrellis, including a Kryo registrator that registers most types.

geotrellis-spark-testkit

Integration tests for geotrellis-spark.

	Utility code to create test RDDs of raster data.

	Matching methods to test equality of RDDs of raster data in scalatest
unit tests.

geotrellis-geotools

Provides: geotrellis.geotools.*

geotrellis-vector

Types and algorithms for processing Vector data.

Provides: geotrellis.vector.*

	Provides a scala idiomatic wrapper around JTS types: Point, Line
(LineString in JTS), Polygon, MultiPoint, MultiLine (MultiLineString
in JTS), MultiPolygon, GeometryCollection

	Methods for geometric operations supported in JTS, with results that
provide a type-safe way to match over possible results of geometries.

	Provides a Feature type that is the composition of a geometry and a
generic data type.

	Read and write geometries and features to and from GeoJSON.

	Read and write geometries to and from WKT and WKB.

	Reproject geometries between two CRSs.

	Geometric operations: Convex Hull, Densification, Simplification

	Perform Kriging interpolation on point values.

	Perform affine transformations of geometries

geotrellis-vector-testkit

Integration tests for geotrellis-vector.

	GeometryBuilder for building test geometries

	GeometryMatcher for scalatest unit tests, which aides in testing
equality in geometries with an optional threshold.

geotrellis-vectortile

Experimental. A full Mapbox
VectorTile [https://www.mapbox.com/vector-tiles/] codec.

Provides: geotrellis.vectortile.*

	Lazy decoding

	Read/write VectorTile tile layers from any tile backend

geotrellis-util

Plumbing for other GeoTrellis modules.

Provides: geotrellis.util.*

	Data structures missing from Scala

	Lenses

	Constants

geotrellis-geowave

Experimental. GeoTrellis compatibility for the distributed feature
store GeoWave [https://github.com/ngageoint/geowave].

Provides: geotrellis.spark.io.geowave.*

	Save and load RDDs of features to and from GeoWave.

 Tile Layer Backends

Tile Layer Backends

GeoTrellis isn’t picky about how you store your data. This guide
describes the various tile layer backends we support, how to use them,
and why you might choose one over the other.

To Be or not to Be a Backend

The Scala classes that underpin each backend all inherit from the same
group of traits, meaning they agree on behaviour:

	AttributeStore - save and access layer attributes (metadata,
etc.)

	LayerReader - read RDD[(K, V)] with Metadata[M]

	LayerWriter - write RDD[(K, V)] with Metadata[M]

	LayerUpdater

	LayerReindexer

	LayerCopier

	LayerDeleter

	LayerMover

	LayerManager

The top three are used most often, with the AttributeStore being a
key piece to every other class.

[image:]

By default, the stored attributes are:

	Metadata

	Header (different per backend)

	Key Index

	Schema

BlobLayerAttributeStore stores all attributes in a single JSON
object. DiscreteLayerAttributeStore stores each attribute as a
seperate object (say, a column in the case of databases).

File System

Choose your file system if: you want to perform tests, data ingests,
or data processing locally on your computer.

This is the simplest backend, only requiring a path to read and write
tiles to:

import geotrellis.spark._
import geotrellis.spark.io._
import geotrellis.spark.io.file._

val catalogPath: String = ...

val store: AttributeStore = FileAttributeStore(catalogPath)

val reader = FileLayerReader(store)
val writer = FileLayerWriter(store)

PROs:

	Simple

	Built in: available from the geotrellis-spark package

CONs:

	Not suitable for use in Production.

HDFS

Choose HDFS if: you want a simple setup and fast write speed.

The Hadoop Distributed File System [https://hadoop.apache.org/].
As the name implies, HDFS presents a view to the programmer as if their
entire cluster were one giant file system.

import geotrellis.spark._
import geotrellis.spark.io._
import geotrellis.spark.io.hadoop._

val rootPath: Path = ...
val config: Configuration = ...

/* The `config` argument is optional */
val store: AttributeStore = HadoopAttributeStore(rootPath, config)

val reader = HadoopLayerReader(store)
val writer = HadoopLayerWriter(rootPath, store)

PROs:

	Built in: available from the geotrellis-spark package

	Simple production environment

	Fast writes

	Can also be used locally (good for testing)

	Supports hadoop >= 2.6

CONs

	Slower read speed than alternatives

	Inefficient LayerUpdater functionality

S3

Choose S3 if: you have large amounts of data to store, can pay for
external storage, and want to access the data from anywhere.

Amazon S3 [https://aws.amazon.com/s3/]. Provided you can pay for
their service, S3 is the simplest backend to put into production. There
are no external processes, and it allows your data and application to
live on different clusters. Data replication is handled automatically.
If your application runs on AWS, it can also access S3 data for free.

The GeoTrellis team recommends the S3 backend as the first consideration
when putting a system into production.

import geotrellis.spark._
import geotrellis.spark.io._
import geotrellis.spark.io.s3._ /* from the `geotrellis-s3 package */

val bucket: String = ...
val prefix: String = ...

implicit val sc: SparkContext = ...

val store: AttributeStore = S3AttributeStore(bucket, prefix)

val reader = S3LayerReader(store) /* Needs the implicit SparkContext */
val writer = S3LayerWriter(store)

PROs:

	Your application can access your data from anywhere in the world

	Simple production environment; no external processes

	Fast enough to back a real-time tile server

CONs:

	May be cost-prohibitive, depending on your usage

Accumulo

Choose Accumulo if: you want fast reads and are willing to put in
the setup effort.

Apache Accumulo [https://accumulo.apache.org/]. This is a popular
choice in the GIS world, and is the most battle-tested backend within
GeoTrellis. It requires more mental and physical overhead to put into
production, but is quite performant and provides unique features. To
work with GeoTrellis, it requires an external Accumulo process to be
running.

import geotrellis.spark._
import geotrellis.spark.io._
import geotrellis.spark.io.accumulo._ /* from the `geotrellis-accumulo` package */
import org.apache.accumulo.core.client.security.tokens._

val instanceName: String = ...
val zookeeper: String = ...
val user: String = ...
val token: AuthenticationToken = new PasswordToken(pwd)

val dataTable: String = ...

val strat: AccumuloWriteStrategy = HdfsWriteStrategy() /* Or SocketWriteStrategy */
val opts: AccumuloLayerWriter.Options = AccumuloLayerWriter.Options(strat)

implicit val sc: SparkContext = ...
implicit val instance = AccumuloInstance(
 instanceName,
 zookeeper,
 user,
 token
)

val store: AttributeStore = AccumuloAttributeStore(instance)

val reader = AccumuloLayerReader(instance)
val writer = AccumuloLayerWriter(instance, dataTable, opts)

PROs:

	Fast reads

	Popular in GIS

	Fine-grained field access authentication support

	Supports 1 Exobyte cell size

	Supports accumulo >= 1.7

CONs:

	Complex production environment

	Requires external processes

Cassandra

Choose Cassandra if: you want a simple(r) production environment, or
already have a Cassandra cluster.

Apache Cassandra [http://cassandra.apache.org/]. Cassandra is a
fast, column-based NoSQL database. It is likely the most performant of
our backends, although this has yet to be confirmed. To work with
GeoTrellis, it requires an external Cassandra process to be running.

Note

As of 2016 October 26, our Cassandra support is still relatively new.

import geotrellis.spark._
import geotrellis.spark.io._
import geotrellis.spark.io.cassandra._ /* from the `geotrellis-cassandra package */

val instance: CassandraInstance = ...
val keyspace: String = ...
val attrTable: String = ...
val dataTable: String = ...

implicit val sc: SparkContext = ...

val store: AttributeStore = CassandraAttributeStore(instance, keyspace, attrTable)

val reader = CassandraLayerReader(store) /* Needs the implicit SparkContext */
val writer = CassandraLayerWriter(store, instance, keyspace, dataTable)

PROs:

	Simple(r) production environment; no HDFS, zookeepers, etc.

	Popular as a NoSQL database

	Supports cassandra >= 3

CONs:

	Requires external processes

HBase

Choose HBase if: you have a pre-existing HBase cluster.

Apache HBase [http://hbase.apache.org/], a “Big Table”
implementation based on HDFS. To work with GeoTrellis, HBase requires
external processes much like Accumulo.

Note

As of 2016 October 26, our HBase support is still relatively new.

import geotrellis.spark._
import geotrellis.spark.io._
import geotrellis.spark.io.hbase._ /* from the `geotrellis-hbase package */

val instance: HBaseInstance = ...
val attrTable: String = ...
val dataTable: String = ...

implicit val sc: SparkContext = ...

val store: AttributeStore = HBaseAttributeStore(instance, attrTable)

val reader = HBaseLayerReader(store) /* Needs the implicit SparkContext */
val writer = HBaseLayerWriter(store, dataTable)

PROs:

	More user friendly than Accumulo

	Supports hbase >= 1.2

CONs:

	Slower than Cassandra

	Requires external processes

 Vector Data Backends

Vector Data Backends

GeoTrellis supports two well-known distributed vector-feature stores:
GeoMesa [http://www.geomesa.org/] and
GeoWave [https://github.com/ngageoint/geowave]. A question that
often arises in the vector processing world is: “Which should I use?” At
first glance, it can be hard to tell the difference, apart from “one is
Java and the other is Scala”. The real answer is, of course, “it
depends”.

In the fall of 2016, our team was tasked with an official comparison of
the two. It was our goal to increase awareness of their respective
strengths and weaknesses, so that both teams can focus on their
strengths during development, and the public can make an easier choice.
We analysed a number of angles, including:

	Feature set

	Performance

	Ease of use

	Project maturity

The full report should be made public in Q1/Q2 of 2017.

While developing applications directly with these projects is quite a
different experience, in terms of our GeoTrellis interfaces for each
project (as a vector data backend), they support essentially the same
feature set (GeoWave optionally supports reading/writing Raster layers).

Keep in mind that as of 2016 October 25, both of these GeoTrellis
modules are still experimental.

GeoMesa

import geotrellis.spark._
import geotrellis.spark.io._
import geotrellis.spark.io.geomesa._

val instance: GeoMesaInstance(
 tableName = ...,
 instanceName = ...,
 zookeepers = ...,
 users = ...,
 password = ...,
 useMock = ...
)

val reader = new GeoMesaFeatureReader(instance)
val writer = new GeoMesaFeatureWriter(instance)

val id: LayerId = ...
val query: Query = ... /* GeoMesa query type */

val spatialFeatureType: SimpleFeatureType = ... /* from geomesa - see their docs */

/* for some generic D, following GeoTrellis `Feature[G, D]` */
val res: RDD[SimpleFeature] = reader.read[Point, D](
 id,
 spatialFeatureType,
 query
)

GeoWave

import geotrellis.spark._
import geotrellis.spark.io._
import geotrellis.spark.io.geowave._

val res: RDD[Feature[G, Map[String, Object]]] = GeoWaveFeatureRDDReader.read(
 zookeepers = ...,
 accumuloInstanceName = ...,
 accumuloInstanceUser = ...,
 accumuloInstancePass = ...,
 gwNamespace = ...,
 simpleFeatureType = ... /* from geowave */
)

 Frequently Asked Questions

Frequently Asked Questions

How do I install GeoTrellis?

Sadly, you can’t. GeoTrellis is a developer toolkit/library/framework
used to develop applications in Scala against geospatial data large and
small. To use it, you need it listed as a dependency in your project
config, like any other library. See our Setup
Tutorial on how to do this.

How do I convert a Tile‘s CellType?

Question: Let’s say I have a tile with incorrect CellType
information or that, for whatever reason, I need to change it. How can I
convert a Tile‘s CellType? Which methods can I use?

Answer: There are two distinct flavors of ‘conversion’ which
GeoTrellis supports for moving between CellTypes: convert and
interpretAs. In what follows we will try to limit any confusion
about just what differentiates these two methods and describe which
should be used under what circumstances.

Elsewhere, we’ve said that the
CellType is just a piece of metadata carried around alongside a
Tile which helps GeoTrellis to keep track of how that Tile‘s
array should be interacted with. The distinction between interpretAs
and convert relates to how smart GeoTrellis should be while swapping
out one CellType for another.

Broadly, convert assumes that your Tile‘s CellType is
accurate and that you’d like the semantics of your Tile to remain
invariant under the conversion in question. For example, imagine that
we’ve got categorical data whose cardinality is equal to the cardinality
of Byte (254 assuming we reserved a spot for NoData). Let’s
fiat, too, that the CellType we’re using is ByteConstantNoData.
What happens if we want to add a 255th category? Unless we abandon
NoData (usually not the right move), it would seem we’re out of
options so long as we use ByteCells. Instead, we should call
convert on that tile and tell it that we’d like to transpose all
Byte values to Short values. All of the numbers will remain the
same with the exception of any Byte.MinValue cells, which will be
turned into Short.MinValue in accordance with the new CellType‘s
chosen NoData value. This frees up quite a bit of extra room for
categories and allows us to continue working with our data in nearly the
same manner as before conversion.

interpretAs is a method that was written to resolve a different
problem. If your Tile is associated with an incorrect CellType
(as can often happen when reading GeoTIFFs that lack proper, accurate
headers), interpretAs provides a means for attaching the correct
metadata to your Tile without trusting the pre-interpretation
metadata. The “conversion” carried out through interpretAs does
not try to do anything intelligent. There can be no guarantee that
meaning is preserved through reinterpretation - in fact, the primary use
case for interpretAs is to attach the correct metadata to a Tile
which is improperly labelled for whatever reason.

An interesting consequence is that you can certainly move between data
types (not just policies for handling NoData) by way of
interpretAs but that, because the original metadata is not accurate,
the default, naive conversion (_.toInt, _.toFloat, etc.) must be
depended upon.

/** getRaw is a method that allows us to see the values regardless of
if, semantically, they are properly treated as non-data. We use it here
simply to expose the mechanics of the transformation 'under the hood' */

val myData = Array(42, 2, 3, 4)
val tileBefore = IntArrayTile(myData, 2, 2, IntUserDefinedNoDataValue(42))

/** While the value in (0, 0) is NoData, it is now 1 instead of 42
 * (which matches our new CellType's expectations)
 */
val converted = tileBefore.convert(IntUserDefinedNoData(1))
assert(converted.getRaw.get(0, 0) != converted.get(0, 0))

/** Here, the first value is still 42. But because the NoData value is
 * now 1, the first value is no longer treated as NoData
 * (which matches our new CellType's expectations) */
val interpreted = tileBefore.interpretAs(IntUserDefinedNoData(1))
assert(interpreted.getRaw.get(0, 0) == interpreted.get(0, 0))

TL;DR: If your CellType is just wrong, reinterpret the meaning of
your underlying cells with a call to interpretAs. If you trust your
CellType and wish for its semantics to be preserved through
transformation, use convert.

How do I import GeoTrellis methods?

Question: In some of the GeoTrellis sample code and certainly in
example projects, it looks like some GeoTrellis types have more methods
than they really do. If I create an IntArrayTile, it doesn’t have
most of the methods that it should - I can’t reproject, resample, or
carry out map algebra operations - why is that and how can I fix it?

Answer: Scala is a weird language. It is both object oriented
(there’s an inheritance tree which binds together the various types of
Tile) and functional (harder to define, exactly, but there’s plenty
of sugar for dealing with functions). The phenomenon of apparently
missing methods is an upshot of the fact that many of the behaviors
bestowed upon GeoTrellis types come from the more functional structure
of typeclasses rather than the stricter, more brittle, and more familiar
standard inheritance structure.

Roughly, if OO structures of inheritance define what can be done in
virtue of what a thing is, typeclasses allow us to define an object’s
behavior in virtue of what it can do. Within Scala’s type system, this
differing expectation can be found between a function which takes a
T where T <: Duck (the T that is expected must be a duck or
one of its subtypes) and a function which takes T where
T: Quacks (the T that is expected must be able to quack,
regardless of what it is).

If this sounds a lot like duck-typing, that’s because it is. But,
whereas method extension through duck-typing in other languages is a
somewhat risky affair (runtime errors abound), Scala’s type system
allows us to be every bit as certain of the behavior in our typeclasses
as we would be were the methods defined within the body of some class,
itself.

Unlike the rather straightforward means for defining typeclasses which
exist in some languages (e.g. Haskell), Scala’s typeclasses depend upon
implicitly applying pieces of code which happen to be in scope. The
details can get confusing and are unnecessary for most work with
GeoTrellis. If you’re interested in understanding the problem at a
deeper level, check out this excellent
article [http://danielwestheide.com/blog/2013/02/06/the-neophytes-guide-to-scala-part-12-type-classes.html].

Because the entire typeclass infrastructure depends upon implicits, all
you need to worry about is importing the proper set of classes which
define the behavior in question. Let’s look to a concrete example. Note
the difference in import statements:

This does not compile.

import geotrellis.vector._

val feature = Feature[Point, Int](Point(1, 2), 42)
feature.toGeoJson // not allowed, method extension not in scope

This does.

import geotrellis.vector._
import geotrellis.vector.io._

val feature = Feature[Point, Int](Point(1, 2), 42)
feature.toGeoJson // returns geojson, as expected

TL;DR: Make sure you’re importing the appropriate implicits. They define
methods that extend GeoTrellis types.

How do I resolve dependency compatibility issues (Guava, etc.)?

Full possible exception message:

Caused by: java.lang.IllegalStateException: Detected Guava issue #1635
which indicates that a version of Guava less than 16.01 is in use. This
introduces codec resolution issues and potentially other incompatibility
issues in the driver. Please upgrade to Guava 16.01 or later.

GeoTrellis depends on a huge number of complex dependencies that may cause
dependency hell. One of such dependency is the Guava library. GeoTrellis
ETL and GeoTrellis Cassandra depend on Guava 16.01, but Hadoop
depends on Guava 11.0.2 which causes runtime issues due to library
incompatibility. When two different versions of the same library are both
available in the Spark classpath and in a fat assembly jar, Spark will use
library version from its classpath.

There are two possible solutions:

1. To shade the conflicting library (example below shades Guava in all
GeoTrellis related deps, this idea can be extrapolated on all conflicting
libraries):

assemblyShadeRules in assembly := {
 val shadePackage = "com.azavea.shaded.demo"
 Seq(
 ShadeRule.rename("com.google.common.**" -> s"$shadePackage.google.common.@1")
 .inLibrary(
 "com.azavea.geotrellis" %% "geotrellis-cassandra" % gtVersion,
 "com.github.fge" % "json-schema-validator" % "2.2.6"
).inAll
)
}

2. To use spark.driver.userClassPathFirst [http://spark.apache.org/docs/latest/configuration.html#runtime-environment].
It’s an experimental Spark property to force Spark using all deps from the
fat assembly jar.

 Architecture Decision Records

Architecture Decision Records

This is a collection of subdocuments that describe why (or why not) we
made a particular design decision in GeoTrellis.

0001 - Streaming Writes

Context

To write streaming data (e.g. RDD[(K, V)]) to an S3 backend it
is necessary to map over rdd partitions and to send multiple async PUT
requests for all elements of a certain partition, it is important to
synchronize these requests in order to be sure, that after calling a
writer function all data was ingested (or at least attempted). Http
status error 503 Service Unavailable requires resending a certain
PUT request (with exponential backoff) due to possible network problems
this error was caused by. Accumulo and Cassandra writers work in
a similar fashion.

To handle this situation we use the Task abstraction from Scalaz,
which uses it’s own Future implementation. The purpose of this
research is to determine the possibility of removing the heavy
Scalaz dependency. In a near future we will likely depend on the
Cats library, which is lighter, more modular, and covers much of the
same ground as Scalaz. Thus, to depend on Scalaz is not ideal.

Decision

We started by a moving from Scalaz Task to an implementation based
on the scala standard library Future abstraction. Because
List[Future[A]] is convertable to Future[List[A]] it was thought
that this simpler home-grown solution might be a workable alternative.

Every Future is basically some calculation that needs to be
submitted to a thread pool. When you call
(fA: Future[A]).flatMap(a => fB: Future[B]), both Future[A] and
Future[B] need to be submitted to the thread pool, even though they
are not running concurrently and could run on the same thread. If
Future was unsuccessful it is possible to define recovery strategy
(in case of S3 it is neccesary).

We faced two problems: difficulties in Future synchronization
(Future.await) and in Future delay functionality (as we want an
exponential backoff in the S3 backend case).

We can await a Future until it’s done (Duration.Inf), but we can
not be sure that Future was completed exactly at this point (for
some reason - this needs further investigation - it completes a bit
earlier/later).

Having a threadpool of Futures and having some List[Future[A],
awaiting of these Futures does not guarantees completeness of each
Future of a threadpool. Recovering a Future we produce a new
Future, so that recoved Futures and recursive Futures
are new Futures in the same threadpool. It isn’t obvious how to
await all necessary Futures. Another problem is delayed
Futures, in fact such behaviour can only be achieved by creating
blocking Futures. As a workaround to such a situation, and to
avoid blocking Futures, it is possible to use a Timer, but
in fact that would be a sort of separate Future pool.

Let’s observe Scalaz Task more closely, and compare it to native
scala Futures. With Task we recieve a bit more control over
calculations. In fact Task is not a concurrently running
computation, it’s a description of a computation, a lazy sequence of
instructions that may or may not include instructions to submit some of
calculations to thread pools. When you call
(tA: Task[A]).flatMap(a => tB: Task[B]), the Task[B] will by
default just continue running on the same thread that was already
executing Task[A]. Calling Task.fork pushes the task into the
thread pool. Scalaz Tasks operates with their own Future
implementation. Thus, having a stream of Tasks provides more
control over concurrent computations.

Some
implementations [https://gist.github.com/pomadchin/33b53086cbf81a6256ddb452090e4e3b]
were written, but each had synchronization problems. This attempt to get
rid of the Scalaz dependency is not as trival as we had anticipated.

This is not a critical decision and, if necessary, we can come back to
it later.

Consequences

All implementations based on Futures are non-trival, and it
requires time to implement a correct write stream based on native
Futures.
Here [https://gist.github.com/pomadchin/33b53086cbf81a6256ddb452090e4e3b]
are the two simplest and most transparent implementation variants, but
both have synchronization problems.

Scalaz Tasks seem to be better suited to our needs. Tasks
run on demand, and there is no requirement of instant submission of
Tasks into a thread pool. As described above, Task is a lazy
sequence of intructions and some of them could submit calculations into
a thread pool. Currently it makes sense to depend on Scalaz.

0002 - HDFS Raster Layers

Context

Raster layer is a regular grid of raster tiles, represented as a
RDD[(K, V)] where K contains the column, row, and/or time.
Raster layer storage scheme must support two forms of queries with
different requirements:

	Distributed bounding box queries
	Minimum time between start of the query and time at which records
are inspected for a match

	Minimum number of records discarded during query refinement stage

	Key/Value look-ups
	Clear mapping from any K to a single block file

	Efficient seeks to any random value in the layer

HDFS does not provide any active index management so we must carefully
define a storage and indexing scheme that supports both of those cases.

Decision

The design builds on an established pattern of mapping a
multi-dimensional tile key to a one-dimensional index using a space
filling curve (SFC). This requires definition of bounding spatial extent
and resolution but provides a total ordering for our records.

MapFiles

The layer will be sorted and written to multiple Hadoop MapFiles.
MapFile consist of two files:

	data file is a SequenceFile of LongWritable and
BytesWritable key/value pairs where the key is the SFC index and
value bytes are Avro encoded Vector[(K,V)] where all Ks map
to the given SFC index.

	index file is a SequenceFile which maps a LongWritable in
seen in data file to its offset at some defined
indexInterval.

When MapFile is open the index is read fully and allows fast
random seeks into the data file.

Each map file will consequently correspond to an SFC range from from
first to last key stored in the file. Because the whole layer is sorted
before being written we can assume that that ranges covered by the map
files are exclusive.

It will be important to know which SFC range each file corresponds to
and to avoid creating an addition overall index file we record the value
of the first SFC index stored in the map file as part of the file name.

We experimented with using a bloom filter index, but it did not appear
appropriate. Because each file will be restricted to be no bigger than a
single HDFS block (64M/128M) the time to compute and store the bloom
filter does not offer any speed improvements on per-file basis.

Single Value Queries

In a single value query we are given an instance of K and we must
produce a corresponding V or an error. The first step is to locate
the MapFile which potentially contains (K, V) record. Because
the layer records are indexed by their SFC index we map K to
i: Long and determine which file contains potential match by
examining the file listing and finding the file with maximum starting
index that is less than equal i. At this point the MapFile must
be opened and queried for the key.

The file listing is a comparatively expensive operation that is cached
when we create a Reader[K, V] instance for a given layer from
HadoopValueReader. Additionally as we maintain an LRU cache of
MapFiless as we open them to satisfy client requests. Because SFC
preserves some spatial locality of the records, geographically close
records are likely to be close in SFC index, and we expect key/value
queries to be geographically grouped, for instance requests from a map
viewer. This leads us to expect that MapFile LRU cache can have a
high hit-rate.

Once we have located a record with matching SFC index we must verify
that it contains a matching K. This is important because several
distinct values of K can potentially map to the same SFC index.

Bounding Box Queries

To implement bounding box queries we extend FileInputFormat, the
critical task is to filter the potential file list to remove any files
which do not have a possible match. This step happens on the Spark
driver process so it is good to perform this task without opening the
files themselves. Again we exploit the fact that file names contain the
first index written and assume that a file covers SFC range from that
value until the starting index of the file with the next closest index.

Next the query bounding box is decomposed into separate list of SFC
ranges. A single contiguous bounding box will likely decompose into many
hundreds or even thousands of SFC ranges. These ranges represent all of
the points on SFC index which intersect the query region. Finally we
discard any MapFile whose SFC index range does not intersect the the
bounding box SFC ranges.

The job of inspecting each MapFile is distributed to executors which
perform in-sync traversal of query SFC ranges and file records until the
end of each candidate file is reached. The resulting list of records is
checked against the original bounding box as a query refinement step.

Layer Writing

When writing a layer we will receive RDD[(K, V)] with Metadata[M]
with unknown partitioning. It is possible that two records which will
map to the same SFC index are in fact located on different partitions.

Before writing we must ensure that all records that map to a given SFC
index value reside on the same partition and we are able to write them
in order. This can be expressed as a
rdd.groupByKey(k => sfcIndex(k)).sortByKey. However we can avoid the
double shuffle implied here by partitioning the rdd on SFC index of
each record and defining partition breaks by inspecting dataset bounding
box which is a required part of M. This approach is similar to using
RangePartitioner but without the requirement of record sampling.
Critically we instruct Spark to sort the records by their SFC index
during the single shuffle cause by repartitioning.

With records thus partitioned and sorted we can start writing them to
MapFiles. Each produced file will have the name of
part-r-<partition number>-<first record index>. This is trivial to
do because we have the encoded record when we need to open the file for
writing. Additionally we keep track to number of bytes written to each
file so we can close it and roll over to a new file if the next record
written is about to cross the HDFS block boundary. Keeping files to a
single block is a standard advise that optimizes their locality, it is
now not possible to have a single file that is stored across two HDFS
nodes.

Consequences

This storage strategy provides key features which are important for
performance:

	Writing is handled using a single shuffle, which is minimum required
to get consistency

	Sorting the records allows us to view them as exclusive ranges and
filter large number of files without opening them

	Storing index information in the file name allows us to perform query
planning without using a secondary index or opening any of the
individual files

	Individual files are guaranteed to never exceed block boundary

	There is a clear and efficient mapping from any K to a file
potentially containing the matching record

Testing showed that HadoopValueReader LRU caching strategy is
effective and it provides sufficient performance to support serving a
rendered tile layer to a web client directly from HDFS. It is likely
that this performance can be further improved by adding an actor-based
caching layer to re-order the requests and read MapFiles in order.

Because each file represents an exclusive range and there is no layer
wide index to be updated there is a possibility of doing an incremental
layer update where we only change those MapFiles which intersect
with the updated records.

0003 - Readers / Writers Multithreading

Context

Not all GeoTrellis readers and writers implemented using MR jobs
(Accumulo RDDReader, Hadoop RDDReaders), but using socket reads as well.
This (socket) this approach allows to define paralelizm level depending
on system configuration, like CPU, RAM, FS. In case of RDDReaders,
that would be threads amount per rdd partition, in case of
CollectionReaders, that would be threads amount per whole
collection.

All numbers are more impericall rather than have strong theory
approvals. Test cluster works in a local network to exclude possible
network issues. Reads tested on ~900 objects per read request of landsat
tiles (test
project [https://github.com/geotrellis/geotrellis-landsat-emr-demo]).

Test cluster

	Apache Spark 1.6.2

	Apache Hadoop 2.7.2

	Apache Accumulo 1.7.1

	Cassandra 3.7

Decision

Was benchmarked functions calls performace depending on RAM / and CPU
cores availble.

File Backend

FileCollectionReader optimal (or reasonable in most cases) pool size
equal to cores number. As well there could be FS restrictions, that
depends on a certain FS settings.

	collection.reader: number of CPU cores available to the virtual
machine

	rdd.reader / writer: number of CPU cores available to the virtual
machine

Hadoop Backend

In case of Hadoop we can use up to 16 threads without reall
significant memory usage increment, as HadoopCollectionReader keeps
in cache up to 16 MapFile.Readers by default (by design). However
using more than 16 threads would not improve performance signifiicantly.

	collection.reader: number of CPU cores available to the virtual
machine

S3 Backend

S3 threads number is limited only by the backpressure, and that’s an
impericall number to have max performance and not to have lots of
useless failed requests.

	collection.reader: number of CPU cores available to the virtual
machine, <= 8

	rdd.reader / writer: number of CPU cores available to the virtual
machine, <= 8

Accumulo Backend

Numbers in the table provided are average for warmup calls. Same results
valid for all backends supported, and the main really performance
valueable configuration property is avaible CPU cores, results table:

4 CPU cores result (m3.xlarge):

	Threads
	Reads time (ms)
	Comment

	4
	~15,541
	
	

	8
	~18,541
	~500mb+ of ram usage to previous

	32
	~20,120
	~500mb+ of ram usage to previous

8 CPU cores result (m3.2xlarge):

	Threads
	Reads time (ms)
	Comment

	4
	~12,532
	
	

	8
	~9,541
	~500mb+ of ram usage to previous

	32
	~10,610
	~500mb+ of ram usage to previous

	collection.reader: number of CPU cores available to the virtual
machine

Cassandra Backend

4 CPU cores result (m3.xlarge):

	Threads
	Reads time (ms)
	Comment

	4
	~7,622
	
	

	8
	~9,511
	Higher
load on a
driver
node + (+
~500mb of
ram usage
to
previous)

	32
	~13,261
	Higher
load on a
driver
node + (+
~500mb of
ram usage
to
previous)

8 CPU cores result (m3.2xlarge):

	Threads
	Reads time (ms)
	Comment

	4
	~8,100
	
	

	8
	~4,541
	Higher
load on a
driver
node + (+
~500mb of
ram usage
to
previous)

	32
	~7,610
	Higher
load on a
driver
node + (+
~500mb of
ram usage
to
previous)

	collection.reader: number of CPU cores available to the virtual
machine

	rdd.reader / writer: number of CPU cores available to the virtual
machine

Conclusion

For all backends performance result are pretty similar to Accumulo
and Cassandra backend numbers. In order not to duplicate data these
numbers were omitted. Thread pool size mostly depend on CPU cores
availble, less on RAM. In order not to loose performane should not be
used threads more than CPU cores availble for java machine, otherwise
that can lead to significant performance loss.

 Proj4 Implementation

Proj4 Implementation

GeoTrellis relies heavily on the Proj4J library, which in turn borrows much
of its implementation from the proj.4 [https://github.com/OSGeo/proj.4]
c library. There is a correspondence between proj.4 functions and Proj4J
classes, although it is not direct since C and Java coding conventions vary.

Note

Currently the GeoTrellis team maintains a fork of
Proj4J in the GeoTrellis source repository, rather than
relying on an official release. This includes some added
projection parameters and other improvements to make proj4j
more suitable for use in a distributed context such as
marking appropriate objects with the java.io.Serializable
marker interface.

The format of parameters passed to proj.4 command line tools is also
supported by Proj4J, although it is not 100% compatible with all parameters.
In some cases invalid parameters may cause exceptions, in others they may
cause incorrect results.

What makes a Coordinate Reference System?

Any time you load a coordinate reference system in Proj4J you are creating
an instance of the CoordinateReferenceSystem class.
CoordinateReferenceSystem is a wrapper around two types:

	Datum which defines a coordinate system anchored to the Earth’s
surface [https://en.wikipedia.org/wiki/Geodetic_datum]

	Projection which defines the
mapping [https://en.wikipedia.org/wiki/Map_projection] we are
using between that curved surface and 2-dimensional space.
Projections in Proj4J support many parameters including units to be
used, axis reordering, and some that are specific to individual
projection types.

While it is technically possible to create a CoordinateReferenceSystem
by manipulating Projection and Datum instances in Java code, typical
usage is to use the Proj4Parser class to create one from proj.4
parameters.

Note that in contrast to the Proj4J implementation of a
CoordinateReferenceSystem containing objects, all the coordinate system
parameters are contained in the PJ struct in proj.4.

Datum

A Datum in Proj4J contains a reference Ellipsoid (model of the Earth
as a mathematical surface [https://en.wikipedia.org/wiki/Ellipsoid] with
known equatorial radius and polar radius) and defines a mathematical
transform to and from WGS84 latitude/longitude coordinates. This can be a
simple 3-parameter transform (affine translation,) a 7-parameter transform [https://en.wikipedia.org/wiki/Helmert_transformation] (affine translate
+ rotate + scale,) or a Grid mapping part of the world’s surface to
latitude/longitude. Proj4’s +ellps +datum +nadgrids and
+towgs84 parameters all affect the Datum in the parsed projection.
In proj.4 the datum information is flattened into the PJ struct rather
than separated out to a separate entity.

Projection

A Projection in Proj4J represents a formula for projecting geodetic
coordinates (latitude/longitude/distance from center of the earth) to some
2D coordinate system. The Java encoding of these is a Projection base
class with subclasses for each supported formula; eg MercatorProjection.
The +proj parameter determines which projection class is instantiated.
Aside from this and the datum parameters, all supported parameters affect
fields of the Projection. In proj.4 the projection function is
represented as pointers to setup, transform, inverse transform, and teardown
functions, with these families of functions being implemented in one C
source file per projection.

EPSG Codes

The EPSG database is released as a collection of XML files and periodically
updated. The proj4 project seems to have automatic means to convert the XML
parameter definitions to proj4 parameter lists, and ships a file containing
one epsg coordinate system definition per line in nad/epsg. For Proj4J
we have simply copied this file directly.

Testing

The tests for Proj4J are mostly Scala ports of JUnit tests with
hand-constructed inputs and outputs. Of particular interest are the tests in
the MetaCRSTest which reads input parameters and expected results from
CSV files, making it a little easier to manage large test suites. The
GenerateTestCases.scala file in the tests directory uses the cs2cs
command line tool to perform sample conversions in each supported coordinate
reference system for cross-validation. If you’re looking to improve Proj4J’s
consistency with proj.4 a good place to start is the proj4-epsg.csv
dataset in src/test/resources/ - changing failing to passing on
any line in that file will generate one test failure that you can
investigate. Furthermore there are tests marked with the ScalaTest
ignore function in many of the other test suites that would ideally be
enabled and passing.

Further Reading

For some general information on coordinate systems and geospatial
projections, see:

	Snyder, 1987: Map projection; a working
manual [http://pubs.er.usgs.gov/usgspubs/pp/pp1395]

	Map
projections [http://www.progonos.com/furuti/MapProj/Normal/TOC/cartTOC.html]

	proj.4 Wiki [https://github.com/osgeo/proj.4/wiki]

 High Performance Scala

High Performance Scala

Macros

Note

Because scala macros require a separate stage of compilation,
they’ve been broken out into their own package in GeoTrellis.
Otherwise, the functionality to be found there fits most neatly into
geotrellis.raster.

Why Macros?

Macros are complex and harder to read than most code. As such, it is
reasonable to demand justification when they are employed and to be
suspicious of their necessity. Here are some reasons you’ll find macros
in GeoTrellis:

Boxing and Unboxing

The main purpose for all of the macros employed throughout GeoTrellis
(though mostly in geotrellis.raster) is to avoid the JVM’s so-called
‘boxing’ of primitive types. Boxing, in other contexts, is often called
‘wrapping’ and it involves passing around primitive values (which
normally are lightweight and which require no special setup to work
with) inside objects that are far heavier (a JVM double is 8 bytes while
the boxed variant requires 24 bytes!) and which require processing time
to unwrap.

Readability and Consistency of Performant Code

Above, it was pointed out that macros are harder to read. This is true,
but there are some special circumstances in which their use can improve
readability and help to ensure consistency. When writing performant
code, it is often not possible to stay DRY (Don’t Repeat Yourself). This
adds significant burdens to future modifications of shared behavior (you
have to change code all over the library) and it reduces readability
by exploding the sheer amount of text which must be read to make sense
of a given portion of code.

How Macros are Used

NoData Checks

Throughout geotrellis.raster, there are lots of checks about whether
or not a given value is data or whether its value represents NoData.

isData(Int.MinValue) // false
isNoData(Int.MinValue) // true

isData(Double.NaN) // false
isNoData(Double.NaN) // true

This macro provides inlined code which checks to see if a given value is
the GeoTrellis-internal notion of NoData. Int.MinValue and
Double.NaN are the two NoData values Geotrellis isData and
isNoData check against.

Type Conversion

Similar to the NoData checks mentioned above, type conversion macros
inline functionality which converts NoData values for different
CellTypes (see the documentation about
celltypes for more on the
different NoData values). This is a boon to performance and it
reduces the lines of code fairly significantly.

Instead of this:

val someValue: Int = ???
val asFloat =
 if (someValue == Int.MinValue) Float.NaN
 else someValue.toFloat

We can write:

val someValue: Int = ???
val asFloat = i2f(someValue)

Tile Macros

Unlike the above macros, tile macros don’t appreciably improve
readability. They’ve been introduced merely to overcome shortcomings in
certain boxing-behaviors in the scala compiler and understanding their
behavior isn’t necessary to read/understand the GeoTrellis codebase.

Micro-Optimizations

Loops

In Scala “``for`-loops” are more than just loops
<http://docs.scala-lang.org/tutorials/FAQ/yield.html>`__. A commonly-seen
feature throughout the codebase is the use of cfor- or while-loops
where it would seem that an ordinary “for-loop” would be sufficient; we
avoid using them in most cases because the flexibility of Scala’s for
construct can come at a cost.

For example, the following simple for-loop

for(i <- 0 to 100; j <- 0 to 100) { println(i+j) }

does not just just put the value 0 into a couple of variables, execute
the loop body, increment the variables and as appropriate, and either
branch or fall-through as appropriate. Instead, the Scala compiler
generates objects representing the ranges of the outer- and inner-loops,
as well as closures representing the interior of each loop. That results
in something like this:

(0 to 100).foreach({ x => (0 to 100).foreach({ y => println(x+y) }) })

which can lead to unnecessary allocation and garbage collection. In the
case of more complicated for-loops, the translation rules can even
result in boxing of primitive loop variables.

The cfor construct from the Spire library avoids this problem
because it is translated into the while construct, which does not
incur the same potential performance penalties as the for construct.

Specialization

Another strategy that we imply to avoid unnecessary boxing is use of the
@specialized decorator.

An example is the Histogram[T] type, which is used to compute either
integer- or double-valued histograms. The declaration of that type looks
something like this:

abstract trait Histogram[@specialized (Int, Double) T <: AnyVal] { ... }

The @specialized decorator and its two arguments tell the compiler
that it should generate three versions of this trait instead of just
one: Histogram[Int], Histogram[Double] and the customary generic
version Histogram[T]. Although this multiplies the amount of
bytecode associated with this type by roughly a factor of three, it
provides the great advantage of preventing boxing of (most) arguments
and variables of type T. In addition, specialization also opens up
additional opportunities for optimization in circumstances where the
compiler knows that it is dealing with a particular primitive type
instead of a object.

Mutable Types

Although use of immutable data structures is preferred in Scala, there
are places in the codebase where mutable data structures have been used
for performance reasons. This pattern frequently manifests as use of
foreach on a collection rather than filter and/or map. This
is helpful because less allocation of intermediate objects reduces
garbage collection pressure.

The Tile Hierarchy

One of the most broadly-visible performance-related architectural
features present in GeoTrellis is the tile hierarchy. Prompted by
concerns similar to those which motivated the use of the
@specialized decorator, this hierarchy is designed to prevent
unnecessary boxing. The hierarchy provides a structure of relationships
between tiles of conceptually similar types, for example
IntArrayTiles and DoubleArrayTile, but they are connected via
type-neutral traits rather than traits or base classes with a type
parameter.

[image: tile-hierarchy]
tile-hierarchy

As brief example of the advantage that is provided, the types
IntArrayTile and DoubleArrayTile both share a common ancestor,
ArrayTile, which guarantees that they provide an apply method.
That method is used to index the underlying array. In the case of
IntArrayTile it directly indexes the array and in the case of
DoubleArrayTile the array is indexed and then the retrieved value is
converted form a double to an Int and returned. A reliable
interface is provided, but without the risk of boxing that use of a type
parameter would have.

Along similar lines, the fact that IntArrayTile and
UByteGeoTiffTile share a common ancestor Tile gurantees that
they both provide the method foreach, which allows a function to be
applied to each pixel of a tile. This is possible even though those two
types are backed by very different data structures: an array for the
first one and complex TIFF structure for the second.

Some of the tile-related code is partially-auto generated using Miles
Sabin’s
Boilerplate [https://github.com/geotrellis/geotrellis/blob/master/project/Boilerplate.scala]
mechanism. In particular, this mechanism is used to generate the code
related to TileCombiners.

Spark

The two principal Spark-related performance optimizations used
throughout the GeoTrellis codebase concern improved serialization
performance and avoiding shuffles.

In order to improve serialization performance, we do two things: we use
Kryo serialization instead of standard Java serialization and we
preregister classes with Kryo.

Kryo serialization is faster and more compact than standard Java
serialization. Preregistration of classes with Kryo provides a good
performance boost because it reduces the amount of network traffic. When
a class is not preregistered with Kryo, that class’ entire name must be
transmitted along with the a serialized representation of that type.
However when a class is preregistered, an index into the list of
preregistered classes can be sent instead of the full name.

In order to reduces shuffles, we prefer aggregateByKey or
reduceByKey over groupByKey as recommended by the Spark
documentations [http://spark.apache.org/docs/latest/programming-guide.html#transformations].

 Index

Index

_images/type-composition.png
Any Tile-like Type

CellG

Key Types

Kis one of..

_images/focal-animations.gif

_images/01_blue-to-orange.png
10 #7ros0s
- enoosea
scomier
sepcen
sroees

W reserao
W <ores

_images/09_dark-red-to-yellow-heatmap.png
resion

Wiz
=0
scear
W oseor7
W ez
scoein
0 eeronaz
sroE0B1

_images/Example_krig.png
15

05

05

5% confidence intenvals

nterpoation ——

obsenations [

02

04

08

08

_images/SQL_Joins.png
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Author: http://commons.wikimedia.org/wiki/User:Arbeck

_images/veniceDrawDown.png

_images/tile-layer-backends.png

_images/row-major.png

_images/tile-hierarchy.png
_.__.H_.__ __. H

_:éz

_images/industryDrawDown.png

_images/11_bold-land-use-qualitative.png
W sorsss
W vciser
 easose
W ovess

nav.xhtml

 Table of Contents

 		What is GeoTrellis?

_images/03_blue-to-red.png
Wooscs

1 ses0201
1 mascsos
scconeo

esoc
10 #ocos2
1 #oossec

W ooeeae

_images/05_light-to-dark-sunset.png
#rago0t
e
- eeroas

- sariosn

_images/08_blue-to-yellow-to-red-heatmap.png
samere
W sosms
W eoo0s

sasceo
1 #76cons
1 #a0050

srotpts

1 ercaor

#ri6022

veeacas

[

_images/local-animations-optimized.gif

_images/coordinateMapping.png

_images/06_light-to-dark-green.png
seseoos.
+ocesD
1 vocona0

_images/halfedge.png

_images/tile-hierarchy1.png
_.__.H_.__ __. H

_:éz

_images/07_yellow-to-red-heatmap.png
1 #eron2z

secaio
W e
W sosezr

scranar
W s
W e
[

